

Pro Git
Scott Chacon, Ben Straub

版本 2.1.0, 2018-02-24

目錄
授權條款 . 1
Scott Chacon 的作者序 . 2
Ben Straub 的作者序 . 3
銘謝 . 4
簡介 . 5
開始 . 7

關於版本控制 . 7
Git 的簡史 . 10
Git 基礎要點 . 11
命令列 . 14
Git 安裝教學 . 14
初次設定 Git . 16
取得說明文件 . 18
摘要 . 19

Git 基礎 . 20
取得一個 Git 倉儲 . 20
紀錄變更到版本庫中 . 21
檢視提交的歷史記錄 . 33
復原 . 39
與遠端協同工作 . 42
標籤 . 47
Git Aliases . 51
總結 . 52

使用 Git 分支 . 53
簡述分支 . 53
分支和合併的基本用法 . 59
分支管理 . 68
分支工作流程 . 69
遠端分支 . 72
衍合 . 82
總結 . 90

伺服器上的 Git . 91
通訊協定 . 91
在伺服器上佈署 Git . 95
產生你的 SSH 公鑰 . 97
設定伺服器 . 99
Git 常駐程式 . 101
Smart HTTP. 102
GitWeb . 104
GitLab . 105
第3方 Git 託管方案 . 109
總結 . 110

分散式的 Git. 111
分散式工作流程 . 111
對專案進行貢獻 . 114
維護一個專案 . 135
Summary . 149

GitHub . 150
建立帳戶及設定 . 150

參與一個專案 . 154
維護專案 . 172
Managing an organization . 184
Scripting GitHub . 188
總結 . 197

Git Tools . 198
Revision Selection . 198
Interactive Staging . 205
Stashing and Cleaning . 209
Signing Your Work . 215
Searching. 219
Rewriting History . 223
Reset Demystified . 229
Advanced Merging . 249
Rerere . 266
Debugging with Git . 272
Submodules . 275
Bundling . 294
Replace . 298
Credential Storage . 306
Summary . 311

Customizing Git . 312
Git Configuration . 312
Git Attributes . 322
Git Hooks . 330
An Example Git-Enforced Policy . 333
Summary . 342

Git and Other Systems . 343
Git as a Client . 343
Migrating to Git. 387
Summary . 402

Git Internals . 403
Plumbing and Porcelain. 403
Git Objects . 404
Git References . 413
Packfiles. 418
The Refspec. 421
Transfer Protocols . 423
Maintenance and Data Recovery . 428
Environment Variables . 435
Summary . 441

附錄 A: Git in Other Environments . 442
Graphical Interfaces . 442
Git in Visual Studio . 447
Git in Eclipse . 448
Git in Bash . 449
Git in Zsh . 450
Git in Powershell . 452
Summary . 453

附錄 B: Embedding Git in your Applications . 454
Command-line Git . 454

Libgit2 . 454
JGit . 459

附錄 C: Git Commands . 464
Setup and Config . 464
Getting and Creating Projects . 465
Basic Snapshotting . 465
Branching and Merging . 468
Sharing and Updating Projects. 470
Inspection and Comparison . 472
Debugging . 472
Patching . 473
Email. 474
External Systems . 475
Administration . 475
Plumbing Commands . 476

Index. 477

授權條款
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/
3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Scott Chacon 的作者序
歡迎來到 Pro Git 的第二版。 第一版發行至今已經超過 4 年了。 從那個時候到現在，有很多東西已經改變
了，但也有很多重要的事情沒有改變。 獲益於 Git 核心團隊令人吃驚的向下相容程度，所以大多數核心命令
和概念至今仍然有效。與此同時，在 Git 的相關社群中，也有一些重大的新增和改變。 這本書第二版是為了
處理這些改變並更新這本書，使得這本書可以對新使用者更有幫助。

當我寫第一版時，Git 是個相當難用而且只適合重度使用者使用的工具。 它在當時的社群中使用率開始蒸蒸
日上，但還沒像今天一樣無所不在。 至今，幾乎所有的開源社群都已經採用它。 Git 在 Windows、各種平台
上的圖形化介面、對 IDE 的支援、和商業使用上都已經有了難以置信的進展。 四年前的 Pro Git 這本書根本
無法預知到這些事。 這個新版本主要的目標之一就是要接觸這些在 Git 社群中的最新的東西。

有在使用 Git 的開放原始碼社群也暴增了。 當我在大約五年前坐下來寫這本書時（第一版花了我一些時間寫
出來），我開始在一家發展網頁版 Git 託管服務且小有名氣的公司工作，名為 GitHub。 在第一版發佈時，
大概只有幾千人在使用 GitHub，而且這個公司只有 4 個員工。 當我現在在寫這個序的時候，GitHub 第一千
萬個被託管的專案已經產生，還有將近 500 萬個註冊的開發者帳戶和 230 個員工。 不論是非對錯，GitHub
用了我在第一版時難以想像的方式，劇烈地改變了大片的開源社群。

我在 Pro Git 的第一版中寫了一個用 GitHub 來託管 Git 的範例，這是一個我不是很喜歡的部分。 我不是很喜
歡在這個我完全是寫給社群的資源中提到我的公司。 到了現在第二版，我仍然很不希望這樣，但 GitHub 在
Git 社群中的重要性卻已經是無法避而不談。 所以除了這個 Git 託管的範例，我已經決定把書的那部分變成
更有深度地去描述何謂 GitHub 和如何有效的使用它。 如果你要學習如何使用 Git，那麼知道如何使用
GitHub 將會幫助你融入這個龐大的社群，而且無論你要把程式碼託管在哪裡，都是有足夠參考價值的。

從第一版到現在還有個重要的改變，就是在 Git 傳輸資料的方法新增並大量使用 HTTP 協定。因為 HTTP 的
簡便性，在書中大部分的例子已經從 SSH 改用 HTTP。

看到 Git 近年來的發展，從一個相對模糊的版本控制系統變成一個基本上主導了開放原始碼和商業的版本控
制系統，這真的很令人驚豔。我很開心 Pro Git 這本書能表現得這麼好，它是世上既成功又完全開放原始碼
的資訊書籍之一。

我希望你能享受這個新版的 Pro Git。

2

Ben Straub 的作者序
這本書的第一版就讓我迷上了 Git，讓我為你介紹一個用更自然且我前所未見的方式去製作軟體。我作為一
個軟體開發者已經數年了，但這方式讓我踏入一條比以前更嶄新有趣的路。

經過幾年後的現在，我是一個主要 Git 實作的貢獻者，我已經在最大的 Git 託管服務公司工作，然後我環遊
世界去教導人們 Git。當 Scott 詢問我是否對於撰寫第二版有興趣時，我甚至完全不需要思考。

非常高興和榮幸能參與這本書的撰寫。我希望它能幫助你，就如同它對我的幫助一樣多。

3

銘謝
『給我的妻子，Becky，缺少了她這次的冒險永遠不會開始。』—— Ben。

『這個版本獻給我的女孩們。給這些年一直照顧我的妻子 Jessica，和當我老了，老到無法搞清楚發生什麼
事的時候，將會照顧我的女兒 Josephine』—— Scott。

4

簡介
你將花費你生命中若干個小時的時間來閱讀這本有關 Git 的書，讓我們先用幾分鐘的時間來介紹一下我們為
你準備的東西。 以下是本書十個主要章節以及三篇附錄的大綱。

在「第一章」我們將介紹版本控制系統（VCSs）和 Git 的基本概念：不涉及技術內容，僅介紹什麼是 Git，
為什麼它會成為 VCSs 大家庭中的一員，它與其它 VCSs 的區別，以及為什麼那麼多人都在使用 Git。 然後，
如果你的系統還沒有安裝 Git，我們將介紹如何下載 Git 以及如何進行設定。

在「第二章」，我們將闡述 Git 的基本使用：如何在您可能遇到的 80% 情況中使用 Git。 在閱讀這個章節以
後，您應該就會克隆（clone）倉庫、查看專案歷史、修改文件和貢獻一些修改。 假設這本書在你看完這個
章節後就毀損，那麼到這裡為止的知識也足夠你運用到你重新再去買一本的時候。

「第三章」關注於 Git 的分支模型。分支模型通常被稱為 Git 的殺手鐧。 在此你將體會到底是什麼東西讓 Git
如此地與眾不同。 當你學習完本章後，你可能會覺得需要一段時間來思考：在沒有 Git 分支的日子裡，到底
是如何生活的。

「第四章」將會關注於伺服器端的 Git。 這一章是給那些想要在您的組織內或你自己個人的協作伺服器上面
設置 Git 的人。 如果你希望採用別人維護的伺服器，在此也會提供許多託管的選擇。

「第五章」將帶你看過各種分散式工作流程的完整細節，以及如何使用 Git 來完成這些流程。 當你學完這個
章節後，你應該能夠熟練地使用多個遠端版本庫、透過電子郵件使用 Git、巧妙地兼顧眾多遠端分支並貢獻
補綴。

「第六章」將談到 GitHub 託管服務以及更進階的工具。我們將談到註冊與帳號管理，創建和使用 Git 版本
庫，貢獻到專案的 共通工作流程以及接受他人貢獻到你的專案，GitHub 的程式設計介面（programmatic
interface）和那些能夠讓您的生活變得更輕鬆的小技巧。

「第七章」關於 Git 的進階命令。 您將學習到一些進階主題，諸如掌握可怕的 reset 命令，使用二分搜尋來
找出錯誤，修改 歷史，更細微的版本選擇…等等。 本章的介紹將豐富您的 Git 知識，讓您成為一個真正的大
師。

「第八章」是關於如何設定你自己的 Git 環境。 這個章節包括設定掛鉤程式來執行或貫徹自訂的策略；以及
如何使用環境設定來讓你可以用你喜歡的方式做事。 我們還會提到如何建立自訂的程式來執行一個自訂的提
交策略。

「第九章」是關於 Git 如何應對其他 VCSs 的能力。 這章節將會提到如何在 Subversion（SVN）的世界使用
Git 以及如何從其他 VCSs 轉換為 Git。 很多組織仍然在使用 SVN，而且並不想要改用 Git，在此你將學到 Git
不可思議的魔力——如果你不得不使用 SVN 伺服器，這個章節將告訴你怎麼做。 這個章節還會提到如何從不
同系統匯入專案，以便你能夠全心全力投入 Git 的懷抱。

「第十章」將深入 Git 神秘、漂亮的實現細節。現在，您已經知道所有有關 Git 的知識，並且能夠把 Git 用的
強大、優雅。 接下來，您可以繼續學習 Git 如何存儲對象、Git 的對象模型是怎樣的、打包文件的細節、服
務器協議…等更多知識。 在這整本書中，我們會在適當的地方引用本章節的內容，以便您可以深入理解某部
分的實作細節。 如果你和我們一樣想要深入理解 Git 全部的實作細節，您也可以先閱讀第十章。 我們將選擇
權交給您。

在「附錄 A」我們將會看到在各種特定環境中使用 Git 的範例。 我們將會涵蓋一些您可能會想用 Git 的不同
GUIs 和 IDE 程式環境。 如果你想在 shell、Visual Studio 或 Eclipse 中使用 Git，那就看看這章的內容吧。

在「附錄 B」我們將探索透過類似 libgit2 和 JGit 等工具來對 Git 編寫腳本或擴充。 如果你對寫複雜且快速
的自訂工具感興趣，而且想要了解 Git 的底層存取，那麼這章就是你需要的。

5

最後在「附錄 C」，我們會一次看過所有 Git 的主要命令，複習在本書中介紹的內容，回憶我們能夠使用這
些命令做什麼。 如果您需要知道本書中我們使用了哪些 Git 命令，您可以在這裡查閱。

現在，讓我們開始吧。

6

開始
本章將介紹 Git 的相關知識。首先將從版本控制工具的背景知識開始，接著是如何在你的系統上運作 Git，而
最後則是如何設定它。 閱讀完本章後你應該可以了解為什麼 Git 如此流行、為何你應該使用它，並完成準備
工作。

關於版本控制
 什麼是「版本控制」？ 我為什麼要關心它呢？ 版本控制是一種記錄一個或若干文件內容變化，以便將來查
閱特定版本修訂情況的系統。 在本書的範例中，你將會學到如何對軟體的原始碼做版本控制。當然，你實際
上可以對電腦上任意型態的檔案做版本控制。

如果您是美術設計或是網頁設計師，你可能會想要記錄每一次對影像或版面配置的修改（這也通常是你最想
要的功能），採用版本控制系統（VCS）就是明智之選。 它允許你將檔案復原到之前的狀態、將整個專案復
原到先前的狀態、比對某一段時間的修改、查看最後是誰在哪個時間點做了錯誤的修改導致問題發生，誰在
何時提出了某個功能缺陷⋯⋯等。 使用版本控制系統一般也意味著如果你做了一些傻事或者遺失檔案，你能
很容易地恢復到原先的樣子， 但額外增加的工作量卻微乎其微。

本地端版本控制
 很多人作版本控制的方法是把檔案複製到另一個目錄（如果他們夠聰明的話，他們還會幫資料夾加上時
間）。 這種做法很常見，因為這樣做很簡單，但是卻也非常容易產生離譜的錯誤。 這種做法非常容易搞混資
料夾，意外寫錯檔案或複製覆蓋到不想要的檔案。

為了解決這個問題，程式設計師很久以前就開發了很多種本機版本控制系統，大多都是採用某種簡單的資料
庫來紀錄檔案的所有變更記錄。

7

圖表 1. 本機版本控制

其中最流行的一種叫做 RCS，至今許多電腦上都還可以找到他的蹤影。 甚至在流行的 Mac OS X 系統中，只
要安裝了開發者工具包以後，你就會有 rcs 的指令可以使用。 RCS 的工作原理是在硬碟上保存一堆特殊格
式的補丁集合（patch set，即檔案從一個版本變更到另一個版本所需資訊）；通過套用任意的補丁，便可以
重新產生出每個版本的檔案內容。

集中化的版本控制系統
 接下來人們又遇到了重大問題，就是如何和其他電腦上的開發者協同合作？ 為了解決這個問題，於是集中
化的版本控制系統應運而生。 這類系統（如：CVS、Subversion 和 Perforce），都有一個伺服器來管理所
有版本的檔案，而許多用戶端會連到這台伺服器取出檔案來使用。 多年以來，這儼然成為版本控制系統的
標準做法。

8

圖表 2. 集中化的版本控制系統。

相對於本機版本控制系統，這種做法帶來了許多好處。 舉例來說，每個人都可以一定程度的知道專案中的其
他人正在做些什麼。 管理員也可以輕鬆掌控每個開發者的權限；而且比每個用戶端只用本機的版本控制系統
好管理很多。

然而，集中化的版本控制系統也有一些嚴重的缺點。 最嚴重的當然是中央伺服器如果發生故障的時候。 如果
當機一小時，那麼這個小時之中，沒有人可以提交更新，也就無法協同合作。 如果中心版本庫的硬碟發生損
壞，又沒有做適當的備份，那麼你就絕對會遺失所有資料——包括專案的全部變更歷史，只會剩下用戶端各
自機器上保留的單獨快照。 本機版本控制系統也存在類似的問題——只要你的專案歷史都放在同一個地方，
就有遺失所有資料的風險。

分散式版本控制系統
 於是分散式版本控制系統（Distributed Version Control Systems，簡稱 DCCSs）就此登上舞台。 在 DVCS
系統（如 Git、Mercurial、Bazaar 和 Darcs）中，用戶端並不只取出最新的檔案快照；還把整個倉儲做個鏡
像。 假設有任何一個協同合作的伺服器故障，事後都可以用任何一個用戶端的鏡像來還原。 因為每個地方都
有完整的資料備份。

9

圖表 3. 分散式版本控制

除此之外，許多這類的系統都可以很好的和許多遠端倉儲互動，所以你可以和不同群組的人使用不同的方
式，在同一個專案內協同合作。 你可以根據需要設定許多工作流程（如：階層式模型），這是在集中式的版
本控制系統中是無法實現的。

Git 的簡史
如同許多生命中偉大的事物一樣，Git 伴隨著一點點創造性破壞和熱烈的討論而生。

10

Linux kernel 是規模相當大的開放原始碼軟體專案。 Linux kernel 在 1991 年到 2002
年間的維護工作，幾乎都是透過補丁和壓縮檔來完成的。 在 2002 年時，Linux kernel 開始採用名為
BitKeeper 的商業分散式版本控制系統。

在 2005 年時，開發 Linux kernel 的社群與開發 BitKeeper 的商業公司的合作關係結束，也就無法再免費使
用該工具。 這就迫使了 Linux 社群（特別是 Linux 之父 Linus Torvalds）基於使用 BitKeeper 所學到的經
驗，來開發自有的工具。 這個系統必須達成下列目標：

• 快速
• 簡潔的設計
• 完整支援非線性的開發（上千個同時進行的分支）
• 完全的分散式系統
• 能夠有效地處理像 Linux kernel 規模的專案（速度及資料大小）

從 Git 在 2005 年誕生後，現在的 Git 已相當成熟，也能很容易上手，並保持著最一開始的要求的品質。 它不
可思議的快速、處理大型專案非常有效率、也具備相當優秀足以應付非線性開發的分支系統。（參考 使用
Git 分支）

Git 基礎要點
你要如何用幾句話形容 Git？ 請仔細閱讀這個重要的章節，如果你瞭解 Git 的本質以及運作的基礎，那麼你
將能夠輕鬆且有效率的使用 Git。 在學習之前，試著忘記以前所知道的其它版本控制系統，如：Subversion
及 Perforce。這將會幫助你使用此工具時發生不必要的誤解。 Git 儲存資料及對待資料的方式遠異於其它系
統，即使它們的使用者介面是很相似的。 瞭解這些差異會幫助你更準確的使用此工具。

記錄檔案快照，而不是差異
Git 與其它版本控制系統（包含 Subversion 以及與它相關的）最主要的差別是如何處理資料的方式。 一般來
說，其他大部分的系統是紀錄一連串檔案更改的資訊。 這些系統（CVS、Subversion、Perforce、Bazaar…
等等）儲存一組基本的檔案以及這些檔案隨時間遞增的更動資料。

圖表 4. 將檔案存成版本與版本之間每個檔案的差異。

但是 Git 不是用這種方式儲存及看待這些資料， 而是將其視為小型檔案系統的一組快照（Snapshot）。 每
當你提交（commit）（註：在 Git 儲存目前專案的狀態）時，Git 會紀錄下你所有目前檔案的樣子，並且參
照到這次快照中。 為了講求效率，只要檔案沒有變更，Git 不會再度儲存該檔案，而是直接將上一次相同的

11

檔案參照到這次快照中。 Git 把它的資料視為一連串的快照。

圖表 5. 將檔案存成許多次的快照。

這是 Git 和其他相似的版本管理系統之間一個重要的差異。 它使得 Git 從各方面重新考量被其他老一輩版本
管理系統所採用的作法， 並使得 Git 更像是一個上面有一些強大工具的小型檔案系統，而不僅只是版本管理
系統。 本書將會在 使用 Git 分支 裡面介紹 Git 分支時，帶領你探索採用這種做法所獲得的好處。

大部份的操作皆可在本地端完成
大部份 Git 的操作皆只需要本地端的檔案及資源即可完成 — 通常並不需要網路上其它電腦的資訊。 如果你以
前使用過每項操作都需要網路延遲的集中式版本控制系統，在這方面 Git 將會讓你覺得速度快到有如神助。
因為專案所有的歷史資料都存在你的本機磁碟中，大多數的操作看起來都像是瞬間完成的。

例如：想要瀏覽專案的歷史時，Git 不需要到伺服器下載歷史再顯示 — 就只需要從本機的資料庫讀取。 這意
味著你幾乎馬上就可以看到專案的歷史。 若讀者想瞭解某個檔案一個月前的版本與現在版本的差別，Git 可
以找出一個月前的檔案並在本機比對差異，而不是要求遠端的伺服器執行這項工作，或者從伺服器取回舊版
本的檔案之後才在本機比對。

這也代表你只有一點點操作沒辦法在你斷線或是中斷 VPN 後執行。 如果你在飛機或火車上想要做些小工
作，你可以愉快的提交並且等到連上網路後再上傳。 如果你回家後沒辦法使 VPN 正常運作，你仍然可以進
行你的工作。 在很多其他的系統上，這麼做通常是不可能或是非常痛苦的事。 以 Perforce 為例，當你連不
上伺服器時，你幾乎沒事可做。在 Subversion 和 CVS 中，你可以修改檔案，但是你沒辦法提交版本（只因
為你連不上資料庫）。 這看起來可能不是什麼大問題，但是你可能會驚訝於 Git 能做到的事情有這麼大的差
異。

Git 能檢查完整性
在 Git 中所有的物件在儲存前都會被計算校驗碼（checksum）並以校驗碼參照物件。 這意味著你不可能瞞
著 Git 對任何檔案或目錄進行修改。 此功能內建在 Git 底層並整合到它的設計哲學。 Git 更能夠馬上察覺傳
輸時的遺失或是檔案的毀損。

Git 用來計算校驗碼的機制稱為 SHA-1 雜湊演算法。 一個校驗碼是由 40 個 16 進位的字母（0–9 和 a–f）所
組成，Git 會根據檔案的內容和資料夾的結構來計算。 一個 SHA-1 校驗碼看起來如下所示：

24b9da6552252987aa493b52f8696cd6d3b00373

你會 Git 中到處都看到校驗碼，因為校驗碼被 Git 到處使用。 事實上在 Git 的資料庫內，每個檔案都是用其

12

內容的校驗碼來儲存，而不是使用檔名。

Git 通常只增加資料
當你使用 Git，幾乎所有的動作都只是增加資料到Git的資料庫。 你很難藉此讓做出讓系統無法復原或者清除
資料的動作。 在任何版本控制系統中，你尚未提交的修改都有可能會遺失或者搞亂。 但是只要你提交快照到
Git 後，很難會發生遺失的情況，特別是你定期將資料庫推送（push）到其它儲存庫時，就更不可能會弄丟
資料。

這讓我們在使用 Git 的時候時可以像在玩玩具一樣，因為我們知道我們可以隨意操作而不會弄壞任何東西。
在 復原 中，我們會進一步討論 Git 如何儲存資料，以及你如何復原看似遺失的資料。

三種狀態
現在，請特別注意。 若你希望接下來的學習過程順利些，請務必記住以下這些關於 Git 的知識。 Git 會把你
的檔案標記為三種主要的狀態：已提交（committed）、已修改（modified）及已預存（staged）。 已提
交代表這檔案己安全地存在你的本地端資料庫。 己修改代表這檔案已被修改但尚未提交到本地端資料庫。 已
預存代表這檔案將會被存到下次你提交的快照中。

這帶領我們到 Git 專案的三個主要區域：Git 資料夾、工作目錄（working directory）以及預存區（staging
area）。

圖表 6. 工作目錄，預存區及 Git 資料夾。

Git 資料夾是 Git 用來儲存你專案的後設資料及物件資料庫的地方。 這是 Git 最重要的部份，而且當你克隆一
個其他電腦的儲存庫時，這個資料夾也會被同時複製。

工作目錄是專案被檢出的某一個版本。 這些檔案從 Git 目錄內被壓縮過的資料庫中拉出來並放在硬碟供你使
用或修改。

預存區是一個單一檔案，一般來說放在 Git 目錄下，儲存關於下次提交的資訊。 有時它會稱為索引
「index」，但現在更常被稱呼為預存區。

13

基本 Git 工作流程大致如下：

1. 你在你工作目錄修改檔案。
2. 預存檔案，將檔案的快照新增到預存區。
3. 做提交的動作，這會讓存在預存區的檔案快照永久地儲存在 Git 目錄中。

若檔案已被存於 Git 資料夾內，則稱為已提交。 若檔案先被修改，接著被增加到預存區域，則稱為已預存。
若檔案被檢出後有被修改，但未被預存，則稱為已修改。 在 Git 基礎 內你將會學到更多關於這些狀態的知識
以及如何利用它們的優點或者直接略過預存步驟。

命令列
Git 的使用方式有很多。 有原始的命令列工具，也有許多不同功能的圖形用戶界面。 在這本書，我們將以命
令列使用 Git。 原因之一是，命令列是可以使用 Git *所有*命令的唯一地方 –– 為簡單起見，大多數的圖形用
戶界面只實作了 Git 的部分功能。 當你學會使用命令列版本，你也會知道如何使用 GUI 版本；反過來則不一
定。 而且，選擇哪個圖形客戶端是個人喜好，但是_所有_使用者都會有安裝好的命令列工具可以使用。

因此，我們希望你知道如何在 Mac 打開終端機或在 Windows 打開命令提示字元或 PowerShell。 如果你不
清楚我們在說什麼，可能需要先暫停、快速去研究一下，才能跟得上這本書的例子和說明。

Git 安裝教學
在你開始使用 Git 以前，你必須先在你的電腦設定到讓 Git 可以使用。 如果你之前已經安裝過，那麼你應該
確認 Git 已經升級到最新版。 你可以使用套件（package）進行安裝、透過安裝程式或是自行下載原始碼自
己編譯。

筆記
本書在撰寫時，Git 的版本為 2.0.0。 雖然本書使用到的指令在比較舊版的 Git 中通常都可以
使用，但是仍然會有一些指令的行為相差極大或是根本無法使用。 Git 提供了相當出色的向下
相容性，所以如果你目前的 Git 版本大於 2.0，那麼應該是不會有什麼太大的問題。

在 Linux 安裝
 如果你想要透過二進位安裝程式安裝基本的 Git 工具集，你通常可以直接透過你所用的發行版
（distribution）內建的基礎套件管理工具。 舉例來說，如果你使用的是 Fedora，你可以使用 yum：

$ sudo yum install git-all

如果你是使用 Debian 系列的發行版，如 Ubuntu，你可以使用 apt-get：

$ sudo apt-get install git-all

如果需要更多選擇，Git 官方網站上有更多其他的發行版中安裝 Git 的安裝步驟，網址為 http://git-
scm.com/download/linux。

在 Mac 中安裝
 在 Mac 中安裝 Git 有很多種方法。 最簡單的方法應該就是直接安裝 Xcode 命令列開發者工具（Xcode

14

http://git-scm.com/download/linux
http://git-scm.com/download/linux

Command Line Tools）。 在 Mavericks (10.9)
或更新版的系統中，你甚至可以直接在終端機中直接打入「git」指令。 如果系統發現你還沒安裝過，便會自
動提示你進行安裝。

如果你希望安裝更新的版本，你也可以透過二進位安裝程式安裝。 在 Git 官方網站上有維護最新版的安裝程
式可供下載，網址在 http://git-scm.com/download/mac。

圖表 7. Git OS X 安裝程式

你還可以透過 GitHub 的 Mac 安裝程式來安裝。 GitHub 的 Git 圖形化工具有提供相對應的選項讓你安裝 Git
命令列工具。 你可以從 GitHub for Mac 官方網站下載，網址在 http://mac.github.com。

在 Windows 中安裝
在 Windows 中安裝 Git 也有很多種方式。 最正式的安裝程式在 Git 官方網站可供下載。 你只需要連到
http://git-scm.com/download/win 然後下載就會自動開始。 請注意這是一個名為 Git for Windows 的專
案，與 Git 本身是互相獨立的。如果你需要更多資料，請查閱 http://git-for-windows.github.io/。

另一個安裝 Git 的簡單方法就是直接安裝 GitHub for Window。 這個安裝程式內已經預設提供 Git 的命令列
版本和圖形化工具。 而且它也能夠完美搭配 Powershell，設定實體憑證快取和完整的 CRLF 設定。 我們將
會在本書的其他章節學到這些事情，但我只想強調，這就是你需要的東西。 你可以直接從 GitHub for
Windows 下載，網址在 http://windows.github.com。

從原始碼安裝
某些人可能會發現從原始碼安裝 Git 反而比較好用，因為你可以拿到最新的 Git 版本。 通常二進位安裝程式
都會落後於 Git 原始碼的版本，雖然 Git 近幾年已經逐漸成熟，兩者的版本差異可能不大。

15

http://git-scm.com/download/mac
http://mac.github.com
http://git-scm.com/download/win
http://git-for-windows.github.io/
http://windows.github.com

如果你希望從原始碼安裝 Git，你需要擁有以下 Git 所需的函式庫：curl, zlib, openssl, expat 和 libiconv。
舉例來說，如果你的系統有 yum（例如 Fedora）或 apt-get（例如 Debian 系列的發行版），你可以使用其
中一個指令來安裝這些最小相依關係（the minimal dependencies），這樣才有辦法安裝編譯並安裝 Git 可
執行檔。

$ sudo yum install curl-devel expat-devel gettext-devel \

 openssl-devel perl-devel zlib-devel

$ sudo apt-get install libcurl4-gnutls-dev libexpat1-dev gettext \

 libz-dev libssl-dev

為了能夠建立這些格式（doc、html、info）的文件，你還需要安裝這些額外的相依關係（注意：RHEL 系列
（像是 CentOS、Scientific Linux）的使用者必需 啟用 EPEL 版本庫，才能下載 docbook2X 套件）：

$ sudo yum install asciidoc xmlto docbook2X

$ sudo apt-get install asciidoc xmlto docbook2x

另外，如果你使用 Fedora 或 RHEL 系列，你還需要做這個：

$ sudo ln -s /usr/bin/db2x_docbook2texi /usr/bin/docbook2x-texi

這是因為所使用的檔名不同。（譯注: 此行命令是對 docbook2x-texi 做一個捷徑，將其「連結」到實際上所
使用的 db2x_docbook2texi。）

當你成功的安裝所有必備的相依關係，你就可以繼續下一步：從以下其中一個地方抓回最新的 Git 原始碼
tarball 壓縮檔。 你可以從 Kernel.org 網站取得，網址在 https://www.kernel.org/pub/software/scm/
git；或是在 GitHub 上面的鏡像，網址在 https://github.com/git/git/releases。 通常在 GitHub 網站上你會
比較容易知道哪個原始碼是最新的；但是在 kernel.org 網站上會同時提供該檔案的數位簽章，以便你下載後
對檔案進行驗證。

再來，編譯並安裝 Git：

$ tar -zxf git-2.0.0.tar.gz

$ cd git-2.0.0

$ make configure

$./configure --prefix=/usr

$ make all doc info

$ sudo make install install-doc install-html install-info

當你安裝完以後，你就可以透過 Git 來取得 Git 最新的原始碼如下：

$ git clone git://git.kernel.org/pub/scm/git/git.git

初次設定 Git
你已經在你的系統上安裝 Git，你或許會想要自訂你的 Git 環境。 你在每台電腦上只需設定一次，這些設定

16

https://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F
https://www.kernel.org/pub/software/scm/git
https://www.kernel.org/pub/software/scm/git
https://github.com/git/git/releases

在 Git 更新時會被保留下來。 你也可以藉由再次執行隨時變更這些設定。

Git 附帶一個名為 git config 的工具，讓你能夠取得和設定組態參數。這些設定允許你控制 Git 各方面的
外觀和行為。 這些參數被存放在下列三個地方：

1. 檔案 /etc/gitconfig：裡面包含該系統所有使用者和使用者倉儲的預設設定。 如果你傳遞
--system 參數給 git config，它就會明確地從這個檔案讀取或寫入設定。

2. 檔案 ~/.gitconfig、~/.config/git/config：你的帳號專用的設定。 只要你傳遞 --global，
就會明確地讓 Git 從這個檔案讀取或寫入設定

3. 任何倉儲中 Git 資料夾的 config 檔案（位於 .git/config）：這個倉儲的專用設定。

每個層級的設定皆覆蓋先前的設定，所以在 .git/config 的設定優先權高於在 /etc/gitconfig 裡的設
定。

在 Windows 系統，Git 會在 $HOME 目錄（對大部份使用者來說是 C:\Users\$USER）內尋找
.gitconfig。 它也會尋找 /etc/gitconfig，只不過它是相對於 MSys 根目錄，取決於讀者當初在
Windows 系統執行 Git 的安裝程式時安裝的目的地。 如果你使用的 Git for Windows 版本是 2.x 或之後的版
本，有個系統層級的組態檔， 位於 Windows XP 系統的 C:\Documents and Settings\All
Users\Application Data\Git\config；而 Vista 及其之後的系統，則位於
C:\ProgramData\Git\config。 要修改這個組態檔只能透過管理者權限執行 git config -f
<file>。

設定識別資料
在你安裝 Git 後首先應該做的事是設定使用者名稱及電子郵件。 這一點非常重要，因為每次 Git 的提交會使
用這些資訊，而且提交後不能再被修改：

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

再次提醒，若你有傳遞 --global 參數，只需要做這工作一次，因為在此系統，不論 Git 做任何事都會採用
此資訊。 若你想指定不同的名字或電子郵件給特定的專案，只需要在該專案目錄內執行此命令，並確定未加
上 --global 參數。

許多圖形使用者介面的工具會在你第一次使用它們時幫你做這工作。

指定編輯器
現在你的識別資料已設定完畢，讀者可設定預設的文書編輯器，當 Git 需要你輸入訊息時會使用它。 預設情
況下，Git 會使用系統預設的編輯器。

若你想指定不同的編輯器，例如：Emacs，可以執行下列指令：

$ git config --global core.editor emacs

如果你想要在 Windows 系統上使用 Notepad++ 做為編輯器，你可以執行下列步驟：

在 x86 系統上

17

$ git config --global core.editor "'C:/Program

Files/Notepad++/notepad++.exe' -multiInst -nosession"

在 x64 系統上

$ git config --global core.editor "'C:/Program Files

(x86)/Notepad++/notepad++.exe' -multiInst -nosession"

筆記
在 Unix 類的系統（如 Linux 和 Mac）或者 Windows 系統，Vim、Emacs 和 Notepad++ 是
開發者最常用的純文字編輯器。 如果你不熟悉使用這些編輯器，你可能需要針對自己想要使
用的編輯器，去找出實際的 Git 設定方法。

警告
你或許會發現，如果你沒有設定編輯器，當系統預設編輯器被執行時你很有可能會不知所
措。 而在 Windows 系統下，使用系統預設編輯器編輯訊息的過程中，有可能因不熟悉而誤
用，進而導致某些 Git 操作過早結束，

檢查讀者的設定
若你想檢查設定值，可使用 git config --list 命令列出所有 Git 在目前位置能找到的設定值：

$ git config --list

user.name=John Doe

user.email=johndoe@example.com

color.status=auto

color.branch=auto

color.interactive=auto

color.diff=auto

...

你可能會看到同一個設定名稱出現多次，因為 Git 從不同的檔案讀到同一個設定名稱（例
如：/etc/gitconfig 及 ~/.gitconfig）。 在這情況下，Git 會使用最後一個設定名稱的設定值。

你也可以輸入 git config <key> 來檢視某個設定目前的值：

$ git config user.name

John Doe

取得說明文件
若讀者在使用 Git 時需要幫助，有三種取得 Git 命令說明文件的方法：

$ git help <verb>

$ git <verb> --help

$ man git-<verb>

18

例如：讀者可以下列命令取得 config 命令的說明文件

$ git help config

這些指令的優點是你可以隨時使用它們，甚至是你沒有連上網路的時候。 若說明文件及這本書不足以幫助讀
者，且讀者需要更進一步的協助，可試著進入 Freenode IRC 伺服器（irc.freenode.net）的 #git 或
#github 頻道。 這些頻道平時都有上百位對 Git 非常瞭解的高手，而且通常樂意協助。

摘要
你應該要對 Git 有基本的認識，並了解 Git 與你先前使用的集中式版本管理系統的差異。 你的系統上現在應
該要有設定過你個人身份的 Git。 是時候該學一些基本的 Git 了！

19

Git 基礎
假如您只能閱讀一章來學習 Git，那麼這個章節就是您的不二選擇。 本章節涵蓋你以後使用 Git 來完成絕大
多數工作時，最常被使用的基本指令。 在讀完本章節後，你應該有能力設定及初始化一個倉儲
（repository）、開始及停止追蹤檔案（track）、預存（stage）及提交（commit）更新。 本章還會提到如
何讓 Git 忽略某些檔案和檔案匹配（patterns）、如何迅速而簡單地撤銷錯誤操作、如何瀏覽你專案的歷史
版本及觀看不同提交（commits）之間的變更、以及如何將更新推送（push）至遠端倉儲或從遠端倉儲拉取
（pull）提交。

取得一個 Git 倉儲
你有兩種主要方法來取得一個 Git 倉儲。 第一種是將現有的專案或者資料夾匯入 Git； 第二種是從其它伺服
器克隆（clone）一份現有的 Git 倉儲。

在現有資料夾中初始化倉儲
若你打算使用 Git 來追蹤（track）現有的專案，只需要進入該專案的資料夾並執行：

$ git init

這個命令將會建立一個名為 .git 的子資料夾，其中包含 Git 所有必需的倉儲檔案，也就是 Git 倉儲的骨架。
到現在這步驟為止，倉儲預設沒有追蹤任何檔案。 （想知道你剛建立的 .git 資料夾內有些什麼檔案，請參
考Git Internals）

如果你的專案資料夾原本已經有檔案（不是空的），那麼建議你應該馬上追蹤這些原本就有的檔案，然後進
行第一次提交。 你可以通過多次 git add 指令來追蹤完所有你想要追蹤的檔案，然後執行 git commit 提
交：

$ git add *.c

$ git add LICENSE

$ git commit -m 'initial project version'

進行這些動作應該不會花你太多時間。 到現在這步驟為止，你已經得到了一個追蹤若干檔案及第一次提交內
容的 Git 倉儲。

克隆現有的倉儲
若你想要取得現有 Git 倉儲的複本（例如：你想要開始協作的倉儲），那你需要使用的命令是 git clone。
若你熟悉其它像是 Subversion 的版本控制系統，你應該注意現在這個命令是克隆（clone），而非取出
（checkout）。 這是 Git 和其他版本控制系統的重要差異：Git 並不僅只是取得專案最新的內容，而是把遠
端倉儲內幾乎所有的資料都抓回來了。 專案歷史紀錄中，每個檔案的每個版本預設都會在你執行 git
clone 時被拉取（pull）回來。 實際上，如果伺服器的硬碟損壞，你通常可以使用任何客戶端克隆的倉儲來
將伺服器重建回原本克隆的狀態。（你可能遺失一些伺服器的掛勾程式 hooks，但你所有的版本資料都還會
健在，請查看 在伺服器上佈署 Git 獲得更多資訊）

克隆倉庫的命令格式是 git clone [url]。 例如：若你想克隆名為 libgit2 的 Git linkable library，可以
執行下列命令：

20

$ git clone https://github.com/libgit2/libgit2

這指令將會建立名為「libgit2」的資料夾，並在這個資料夾下初始化一個 .git 資料夾，從遠端倉儲拉取所
有資料，並且取出（checkout）專案中最新的版本。 若你進入新建立的 libgit2 資料夾，你將會看到專案
的檔案都在裡面了，並且準備就緒等你進行後續的開發或使用。 若你想要將倉儲克隆到「libgit2」以外名字
的資料夾，只需要再多指定一個參數即可：

$ git clone https://github.com/libgit2/libgit2 mylibgit

這個命令做的事與上一個命令大致相同，只不過在本地創建的倉庫名字變為 mylibgit。

Git 支援多種數據傳輸協定。 上一個範例採用 https:// 協定，但你可能會看過 git:// 或
user@server:path/to/repo.git 等使用 SSH 傳輸的協定。 在 在伺服器上佈署 Git 章節將會介紹這些
協定在伺服器端如何配置及使用，以及各種方式的優缺點。

紀錄變更到版本庫中
現在你的手上有了一個貨真價實的 Git 版本庫和這個專案中所有檔案的檢出（checkout）或工作複本
（working copy）， 每當你修改檔案到一個你想記錄它的階段時，你就需要提交（commit）這些變更的快
照到版本庫中。

請記住，你工作目錄下的每個檔案不外乎兩種狀態：已追蹤、未追蹤。 「已追蹤」檔案是指那些在上次快照
中的檔案：它們的狀態可能是「未修改」、「已修改」、「已預存（staged）」； 「未追蹤」則是其它以外
的檔案——在工作目錄中，卻不包含在上次的快照中，也不在預存區（staging area）中的任何檔案； 當你
第一次克隆（clone）一個版本庫時，所有檔案都是「已追蹤」且「未修改」，因為 Git 剛剛檢出它們並且你
尚未編輯過任何檔案。

隨著你編輯某些檔案，Git 會視它們為「已修改」，因為自從上次提交以來你已經更動過它們； 你預存
（stage）這些已修改檔案，然後提交所有已預存的修改內容，接著重覆這個循環。

圖表 8. 檔案狀態的生命週期。

21

檢查你的檔案狀態
git status 命令是用來偵測哪些檔案處在什麼樣的狀態下的主要工具； 如果你在克隆之後直接執行該命
令，應該會看到類似以下內容：

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

這意味著你有一個乾淨的工作目錄——換句話說，已追蹤的檔案沒有被修改； Git 也沒有看到任何未追蹤檔
案，否則它們會在這裡被列出來； 最後，這個命令告訴你目前在哪一個分支上，也告訴你它和伺服器上的同
名分支是同步的。 到目前為止，該分支一直都是預設的「master」，在這裡你先不用擔心它， 使用 Git 分支
會詳細地介紹「分支（branch）」和「參照（reference）」。

假設你在專案中新增一個檔案，例如：一個簡單的 README 檔案； 如果該檔案先前並不存在，執行 git
status 命令後，你會看到未追蹤檔案：

$ echo 'My Project' > README

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 README

nothing added to commit but untracked files present (use "git add" to

track)

你可以看到新增檔案 README 尚未被追蹤，因為它被列在輸出訊息的「Untracked files」欄位下方； 基本
上「未追蹤」表示 Git 發現這個檔案在上次的快照（提交）中並不存在；Git 並不會將此檔案納入你的提交快
照，除非你明確地告訴 Git 要這麼做； 它會這樣做是為了避免你意外地將一些二進位暫存檔或其它你並不想
要的檔案納入版本控制。 讓我們開始追蹤 README 檔案，因為你確實想要將它開始納入版本控制。

追蹤新的檔案
要開始追蹤一個新的檔案，可以使用 git add 命令； 要開始追蹤 README 檔案，你可以執行：

$ git add README

如果再次執行檢查狀態命令，可以看到 README 檔案現在是準備好被提交的「已追蹤」和「已預存」狀態：

22

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

由於它放在「Changes to be committed」欄位下方，你可以得知它已經被預存， 如果你在此時提交，在執
行 git add 的當下所加進來的檔案版本就會被記錄在歷史快照中； 你或許會想到之前執行 git init 後也
有執行過 git add (files)——那就是開始追蹤目錄內的檔案。 git add 命令接受「檔案」或「目錄」
做為路徑名稱；如果是目錄，該命令會用遞迴的方式加入那個目錄下所有的檔案。

預存修改過的檔案
讓我們修改一個已追蹤檔案； 假設你修改了一個先前已追蹤的檔案 CONTRIBUTING.md，接著再次執行 git
status，你會看到類似以下文字：

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: CONTRIBUTING.md

CONTRIBUTING.md 檔案出現在「Changes not staged for commit」欄位下方——代表著位於工作目錄的已
追蹤檔案已經被修改，但尚未預存； 要預存該檔案，你可執行 git add 命令； git add 是一個多重用途
的指令——用來「開始追蹤」檔案、「預存」檔案以及做一些其它的事，像是「標記合併衝突（merge-
conflicted）檔案為已解決」。 比起「把這個檔案加進專案」，把它想成「把檔案內容加入下一個提交中」
會比較容易理解。 現在，讓我們執行 git add 將 CONTRIBUTING.md 檔案預存起來，並再度執行 git
status：

23

$ git add CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

這兩個檔案目前都被預存，而且將會成為你下次提交的內容； 此時，假設在提交前你想起要對
CONTRIBUTING.md 再做一個小修改， 你再次開啟檔案並修改它，然後準備提交； 然而，當我們再次執行
git status：

$ vim CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: CONTRIBUTING.md

見鬼了？ 現在 CONTRIBUTING.md 同時被列在已預存「及」未預存。 這怎麼可能？ 原來 Git 在你執行 git
add 命令時，的確將當時的檔案內容預存起來； 如果你現在提交，最後一次執行 git add 命令時，那個當
下的 CONTRIBUTING.md 的版本會被提交，而不是在提交時你在工作目錄所看到的檔案版本被提交； 如果
你在 git add 後修改檔案，你必需再次執行 git add 預存最新版的檔案：

$ git add CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README

 modified: CONTRIBUTING.md

24

簡潔的狀態輸出
雖然 git status 輸出內容相當全面，但也相當囉嗦； Git 另外提供一個簡潔輸出的選項，因此你可以以一
種較精簡的方式來檢視你的修改； 如果你執行 git status -s 或 git status --short，你可以從該命
令得到一個相當簡單的輸出內容：

$ git status -s

 M README

MM Rakefile

A lib/git.rb

M lib/simplegit.rb

?? LICENSE.txt

未追蹤的新檔案在開頭被標示為 ??、被加入預存區的新檔案被標為 A、已修改檔案則是 M 等等。 標記有二
個欄位——左邊欄位用來指示「預存區」狀態，右邊欄位則是「工作目錄」狀態。 所以在這個範例中，在工
作目錄中的檔案 README 是已修改的，但尚未被預存；而 lib/simplegit.rb 檔案則是已修改且已預存
的； Rakefile 則是曾經修改過也預存過，但之後又再次修改，所以總共有二次修改，一個有預存一個沒
有。

忽略不需要的檔案
通常你會有一類檔案不想讓 Git 自動加入，也不希望它們被顯示為未追蹤， 這些通常是自動產生的檔案，例
如：日誌檔案或者編譯系統產生的檔案； 在這情況下，你可以新建一個名為 .gitignore 的檔案，在該檔
中列舉符合這些檔名的模式（pattern）。 以下是一個 .gitignore 範例檔內容：

$ cat .gitignore

*.[oa]

*~

第一列告訴 Git 忽略任何副檔名為「.o」或「.a」的檔案，它們可能是編譯系統建置程式碼時所產生的目的檔
及連結檔； 第二列告訴 Git 忽略所有檔名以波浪號（~）結尾的檔案，這種檔案通常被用在很多文字編輯器
中，例如：Emacs 把它用在暫存檔； 你可能也想忽略 log、tmp、pid 目錄、自動產生的文件等等； 在你要
開始做事之前將 .gitignore 設定好通常是一個不錯的主意，這樣你就不會意外地將實際上並不想追蹤的檔
案提交到你的 Git 版本庫。

編寫 .gitignore 檔案的模式規則如下：

• 空白列，或者以 # 開頭的列會被忽略。

• 可使用標準的 Glob 模式。
• 以斜線（/）開頭以避免路徑遞迴。（譯注：只忽略特定路徑；如果不以斜線開頭，則不管同名檔案或

同名資料夾在哪一層都會被忽略。）
• 以斜線（/）結尾代表是目錄。

• 以驚嘆號（!）開頭表示將模式規則反向。

Glob 模式就像是 Shell 所使用的簡化版正規運算式（regular expressions）； 一個星號（*）匹配零個或多
個字元、[abc] 匹配中括弧內的其中一個字元（此例為 a、b、c）、問號（?）匹配單一個字元、中括孤內

25

的字以連字號連接（如：[0-9]）用來匹配任何在該範圍內的字元（此例為 0 到 9）；
你也可以使用二個星號用來匹配巢狀目錄；a/**/z 將會匹配到 a/z、a/b/z、a/b/c/z 等等。

以下是另一個 .gitignore 範例檔案：

不要追蹤檔名為 .a 結尾的檔案
*.a

但是要追蹤 lib.a，即使上面已指定忽略所有的 .a 檔案
!lib.a

只忽略根目錄下的 TODO 檔案，不包含子目錄下的 TODO

/TODO

忽略 build/ 目錄下所有檔案
build/

忽略 doc/notes.txt，但不包含 doc/server/arch.txt

doc/*.txt

忽略所有在 doc/ 目錄底下的 .pdf 檔案
doc/**/*.pdf

提示 如果你的專案想要有個好開頭，GitHub 在 https://github.com/github/gitignore 中針對幾十
種專案和程式語言維護了一個相當完整、好用的 .gitignore 範例檔案列表。

檢視已預存及未預存的檔案
如果 git status 命令提供的資訊對你來說太過簡略——你要想精確地知道你修改了什麼，而不只是那些檔
案被修改——你可以使用 git diff 命令； 稍後我們會更詳盡講解 git diff 命令，然而大部分你在使用
它的時候只是為了瞭解兩個問題：已修改但尚未預存的內容是哪些？ 已預存而準備被提交的內容又有哪些？
儘管 git status 命令透過列出檔名的方式大略回答了這些問題，但 git diff 可顯示檔案裡的哪些列被
加入或刪除——如同以往地以補綴（patch）格式呈現。

假設你再次編輯並預存 README 檔案，接著修改 CONTRIBUTING.md 檔案卻未預存它， 如果你執行 git
status 命令，你會再次看到類似以下資訊：

26

https://github.com/github/gitignore

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: CONTRIBUTING.md

想瞭解尚未預存的修改，輸入不帶其它參數的 git diff：

$ git diff

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 8ebb991..643e24f 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -65,7 +65,8 @@ branch directly, things can get messy.

 Please include a nice description of your changes when you submit your

PR;

 if we have to read the whole diff to figure out why you're contributing

 in the first place, you're less likely to get feedback and have your

change

-merged in.

+merged in. Also, split your changes into comprehensive chunks if your

patch is

+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a

PR

 that highlights your work in progress (and note in the PR title that

it's

這命令會比對「工作目錄」和「預存區」之間的版本， 然後顯示尚未被存入預存區的修改內容。

如果你想檢視你已經預存而接下來將會被提交的內容，可以使用 git diff --staged； 這個命令比對的
對象是「預存區」和「最後一次提交」。

27

$ git diff --staged

diff --git a/README b/README

new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README

@@ -0,0 +1 @@

+My Project

很重要且需要注意的一點是 git diff 不會顯示最後一次提交後的所有變更——只會顯示未預存的變更； 這
會讓人困惑，因為如果你預存了所有的變更，git diff 不會輸出任何內容。

舉其它例子，如果你預存 CONTRIBUTING.md 檔案後又編輯它，你可以使用 git diff 檢視檔案中哪些變
更是已預存的、哪些是尚未預存的。 如果它看起來像這樣：

$ git add CONTRIBUTING.md

$ echo '# test line' >> CONTRIBUTING.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: CONTRIBUTING.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: CONTRIBUTING.md

現在你可以使用 git diff 來檢視哪些部分是仍然未預存的：

$ git diff

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 643e24f..87f08c8 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -119,3 +119,4 @@ at the

 ## Starter Projects

 See our [projects

list](https://github.com/libgit2/libgit2/blob/development/PROJECTS.md).

+# test line

以及使用 git diff --cached 檢視哪些部分是已預存的（--staged 和 --cached 是同義選項）：

28

$ git diff --cached

diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md

index 8ebb991..643e24f 100644

--- a/CONTRIBUTING.md

+++ b/CONTRIBUTING.md

@@ -65,7 +65,8 @@ branch directly, things can get messy.

 Please include a nice description of your changes when you submit your

PR;

 if we have to read the whole diff to figure out why you're contributing

 in the first place, you're less likely to get feedback and have your

change

-merged in.

+merged in. Also, split your changes into comprehensive chunks if your

patch is

+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a

PR

 that highlights your work in progress (and note in the PR title that

it's

筆記

Git 外部差異比對工具
接下來我們還會在書中的其它地方以各種不同的用法來使用 git diff 命令； 如果你傾向於
使用圖形或外部差異比對檢視工具，有另一種方法可以查看這些差異內容； 執行 git
difftool 取代 git diff，你可以用軟體工具檢視任何這類型的差異，像是
emerge、vimdiff 或其它更多的工具（包括商業化的產品）； 執行 git difftool --tool
-help 以查看在你系統上有什麼可用的。

提交你的修改
現在你的預存區已被建構成你想要的，你可以開始提交你的變更； 記住：任何未預暫存的檔案——新增的、
已修改的，自從你編輯它們卻尚未用 git add 預存的——將不會納入本次的提交中； 它們仍以「已修改」
的身份存在磁碟中。 在目前情況下，假設你上次執行 git status 時，你看到所有檔案都已經被預存，因
此你準備提交你的變更。 最簡單的提交方式是輸入 git commit：

$ git commit

這麼做會啟動你選定的編輯器 （由你的 Shell 的 $EDITOR 環境變數所指定——通常是 vim 或 emacs；你也
可以如同 開始 所介紹的，使用 git config --global core.editor 命令指定任何一個你想使用
的）。

編輯器會顯示如下文字（此範例為 Vim 的畫面）：

29

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

On branch master

Your branch is up-to-date with 'origin/master'.

#

Changes to be committed:

new file: README

modified: CONTRIBUTING.md

#

~

~

~

".git/COMMIT_EDITMSG" 9L, 283C

你可以看到預設的提交訊息中包含最近一次 git status 的輸出並以註解方式呈現，以及最上方有一列空白
列； 你可以移除這些註解後再輸入提交訊息，或者保留它們以提醒你現在正在提交什麼樣的內容。 （如果想
對你已經修改的內容得到更明確的提示，可以在 git commit 上加上 -v 選項； 這麼做連修改的差異內容也
會被放到編輯器中，如此你便可以精確地看到你正在提交的修改內容。） 當你關閉編輯器，Git 會利用這些
提交訊息（註解和差異內容會被濾除）產生新的提交。

另一種方式則是在 commit 命令的 -m 選項後方直接輸入提交訊息，如下：

$ git commit -m "Story 182: Fix benchmarks for speed"

[master 463dc4f] Story 182: Fix benchmarks for speed

 2 files changed, 2 insertions(+)

 create mode 100644 README

現在你已經建立了你的第一個提交！ 你可從輸出訊息看到此提交相關資訊：提交到哪個分支（master）、
提交的 SHA-1 校驗碼（463dc4f）、有多少檔案被更動，以及統計此提交有多少列被新增和被移除。

記住：那個提交記錄了你放在預存區的快照。 任何你尚未預存的已修改檔案仍然安好地在那裡，你可以做另
一次提交來把它加入到你的歷史中； 每一次提交時，你都正在對專案記錄一個快照，可以在之後用來「復
原」或「比對」。

略過預存區
 雖然「預存區」的用法讓你能夠很有技巧地且精確地提交你想記錄的內容而意外地好用，但有時候它也比你
實際需要的工作流程要繁瑣得多； 如果你想跳過預存區，Git 提供了一個簡易的捷徑， 在 git commit 命令
加上 -a 選項，使 Git 在提交前自動預存所有已追蹤的檔案，讓你略過 git add 步驟：

30

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: CONTRIBUTING.md

no changes added to commit (use "git add" and/or "git commit -a")

$ git commit -a -m 'added new benchmarks'

[master 83e38c7] added new benchmarks

 1 file changed, 5 insertions(+), 0 deletions(-)

請留意這種使用情況：在提交之前，你並不需要執行 git add 來預存 CONTRIBUTING.md 檔案； 那是因為
-a 選項會納入所有已變更的檔案； 很方便，但請小心，有時候它會納入你並不想要的變更。

移除檔案
 要從 Git 中刪除一個檔案，你需要將它從已追蹤檔案中移除（更準確地說，是從預存區中移除），然後再提
交； git rm 命令可完成此工作，它同時也會將該檔案從工作目錄中移除，如此它之後也不會身為未追蹤檔
案而被你看到。

如果你僅僅是將檔案從工作目錄中移除，那麼它會被列在 git status 輸出內容的「Changed but not
updated」（也就是「未預存」）欄位下面：

$ rm PROJECTS.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add/rm <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 deleted: PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")

如果你接著執行 git rm，它會預存該檔案的移除動作：

31

$ git rm PROJECTS.md

rm 'PROJECTS.md'

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 deleted: PROJECTS.md

下一次提交時，該檔案將會消失而且不再被追蹤； 如果你修改了檔案且已經把修改內容加入索引中（譯注：
「加入索引」和「預存」是同義詞），你必需使用 -f 選項才能強制將它移除； 這是一種為了避免已記錄的
快照意外被移除後再也無法使用 Git 復原的保護機制。

另一個有用的技巧是保留工作目錄的檔案，但將它從預存區中移除； 換句話說，你或許想保留在磁碟機上的
檔案但不希望 Git 再繼續追蹤它； 當你忘記將某些檔案加到 .gitignore 中而且不小心預存它的時候會特別
用有，像是不小心預存了一個大的日誌檔案或者一堆 .a 已編譯檔案。 加上 --cached 選項可做到這件事：

$ git rm --cached README

你可將「檔案」、「目錄」、「file-glob 模式」做為參數傳給 git rm 命令， 那意味著你可以做類似下面的
事：

$ git rm log/*.log

注意：星號 * 前面有反斜線（\）； 這是必須的，因為 Git 在你的 Shell 檔名擴展（filename expansion）
之上另外有自己的檔名擴展； 此命令會移除在 log/ 所有副檔名為 .log 的檔案。 或者你也可以做像下面的
事：

$ git rm *~

此命令會移除所有以 ~ 結尾的檔案。

移動檔案
 Git 不像其它 VCS 系統，它並不會明確地追蹤檔案的移動； 如果你在 Git 中重新命名一個檔案，並不會有任
何 Git 後設資料記錄這個動作以辨別你曾經重新命名過檔案； 然而 Git 可以在檔案移動後很聰明地將它們找
出來——我們稍後會對偵測檔案的移動再多做一點說明。

因此 Git 有一個 mv 命令反而有點令人困惑； 如果你想要在 Git 中重新命名一個檔案，你可以執行以下命令：

$ git mv file_from file_to

並且它運作地想當好； 事實上，如果你執行類似以下的動作然後檢視一下狀態，你將看到 Git 將該檔案視為
一個重新命名過的檔案：

32

$ git mv README.md README

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

其實，它相當於執行下列命令：

$ mv README.md README

$ git rm README.md

$ git add README

Git 會在背後判斷檔案被重新命名，因此不管是用上述方法還是用 mv 命令並沒有差別； 實際上唯一不同的是
mv 是一個命令，而不是三個——它只是個方便的功能。 更重要的是你可以使用任何你喜歡的工具來重新命名
一個檔案，然後在提交前才使用 add/rm。

檢視提交的歷史記錄
在產生數筆提交（commit）或者克隆（clone）一個已有歷史記錄的版本庫之後，你或許會想要檢視之前發
生過什麼事； 最基本也最具威力的工具就是 git log 命令。

以下範例使用一個非常簡單的「simplegit」專案做展示； 欲取得此專案，執行：

$ git clone https://github.com/schacon/simplegit-progit

在此專案目錄內執行 git log，你應該會看到類似以下訊息：

33

$ git log

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

預設情況（未加任何選項）git log 以反向的時間順序列出版本庫的提交歷史記錄——也就是說最新的提交
會先被列出來； 如你所見，它也會列出每筆提交的 SHA-1 校驗碼、作者名字及電子郵件、寫入日期以及提
交訊息。

git log 命令有大量且多樣的選項，能精確地找出你想搜尋的結果； 在這裡，我們會展示一些最受歡迎的
選項。

最有用的選項之一是 -p，用來顯示每筆提交所做的修改內容； 你還可以加上 -2 選項，限制只輸出最後兩筆
提交內容。

34

$ git log -p -2

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require 'rake/gempackagetask'

 spec = Gem::Specification.new do |s|

 s.platform = Gem::Platform::RUBY

 s.name = "simplegit"

- s.version = "0.1.0"

+ s.version = "0.1.1"

 s.author = "Scott Chacon"

 s.email = "schacon@gee-mail.com"

 s.summary = "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index a0a60ae..47c6340 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -18,8 +18,3 @@ class SimpleGit

 end

 end

-

-if $0 == __FILE__

- git = SimpleGit.new

- puts git.show

-end

\ No newline at end of file

這個選項除了顯示相同的資訊以外，還會在每筆提交資訊後面附加每個修改檔案的差異內容（譯註：使用 -
+ 來表示差異，- 是刪除行，+ 是新增行；未修改的上下文資訊預設是三行，用來定位有修改的地方）； 對
於「程式碼審核」或「快速瀏覽」協同工作者所新增的一系列提交內容，這是非常有幫助的。 你也可以使用
git log 提供的一系列「摘要」選項； 例如：若想檢視每筆提交簡略的統計資訊，你可以使用 --stat 選
項：

35

$ git log --stat

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

 Rakefile | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

 lib/simplegit.rb | 5 -----

 1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6

Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

 README | 6 ++++++

 Rakefile | 23 +++++++++++++++++++++++

 lib/simplegit.rb | 25 +++++++++++++++++++++++++

 3 files changed, 54 insertions(+)

如你所見，--stat 選項在每筆提交訊息的下方列出「被更動的檔案」、「總共有多少檔案被更動」、「這
些檔案中有多少行被加入或移除」； 它也會在最後印出總結訊息。

另一個實用的選項是 --pretty， 用來改變原本預設輸出的格式； 有數個內建的選項供你選用， 其中
oneline 選項將每一筆提交顯示成單獨一行，對於檢視大量的提交時很有用； 更進一步，short、full

、fuller 選項輸出的格式大致相同，但分別會少一些或者多一些資訊。

$ git log --pretty=oneline

ca82a6dff817ec66f44342007202690a93763949 changed the version number

085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test

a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

最有趣的選項是 format，讓你可以指定自訂的輸出格式； 當需要輸出給機器分析時特別有用——因為明確
地指定了格式，即可確定它不會因為更新 Git 而被更動：

36

$ git log --pretty=format:"%h - %an, %ar : %s"

ca82a6d - Scott Chacon, 6 years ago : changed the version number

085bb3b - Scott Chacon, 6 years ago : removed unnecessary test

a11bef0 - Scott Chacon, 6 years ago : first commit

git log --pretty=format 實用選項 列出 format 一些更實用的選項。

表格 1. git log --pretty=format 實用選項
選項 輸出說明
%H 該提交 SHA-1 雜湊值
%h 該提交簡短的 SHA-1 雜湊值
%T 「樹（tree）」物件的 SHA-1 雜湊值
%t 「樹」物件簡短的 SHA-1 雜湊值
%P 親代（parent）提交的 SHA-1 雜湊值
%p 親代提交簡短的 SHA-1 雜湊值
%an 作者名字
%ae 作者電子郵件
%ad 作者日期（依據 --date 選項值而有不同的格式）
%ar 作者日期，相對時間格式。
%cn 提交者名字
%ce 提交者電子郵件
%cd 提交者日期
%cr 提交者日期，相對時間格式。
%s 標題

你可能會好奇「作者（author）」與「提交者（committer）」之間的差別， 作者是最初修改的人，而提交
者則是最後套用該工作成果的人； 因此，如果你送出某個專案的補綴，而該專案其中一個核心成員套用該補
綴，則你與該成員都有功勞——你是作者，而該成員則是提交者。 我們會在 分散式的 Git 提到更多它們之間
的差別。

當 oneline、format 和另一個 log 選項 --graph 結合在一起使用時將特別有用， 該選項會附加一個還不
錯的 ASCII 圖形用來顯示分支及合併的歷史。

37

$ git log --pretty=format:"%h %s" --graph

* 2d3acf9 ignore errors from SIGCHLD on trap

* 5e3ee11 Merge branch 'master' of git://github.com/dustin/grit

|\

| * 420eac9 Added a method for getting the current branch.

* | 30e367c timeout code and tests

* | 5a09431 add timeout protection to grit

* | e1193f8 support for heads with slashes in them

|/

* d6016bc require time for xmlschema

* 11d191e Merge branch 'defunkt' into local

當下一個章節談到分支（branching）和合併（merging）時，這種輸出型式將會變得更為有趣。

這些只是一些簡單的 git log 格式化輸出選項——還有更多其它的； git log 的常用選項 列出我們目前涵
蓋的以及一些你可能常常會用到的格式化選項，以及它們會如何改變 log 命令的輸出格式。

表格 2. git log 的常用選項
選項 說明
-p 顯示每筆提交的補綴。
--stat 顯示每筆提交中更動檔案的統計及摘要資訊。
--shortstat 只顯示 --stat 提供的的訊息中關於更動、插入、刪除的文字。
--name-only 在提交訊息後方顯示更動的檔案列表。
--name-status 在檔案列表顯示「新增」、「更動」、「刪除」等資訊。
--abbrev-commit 只顯示 SHA-1 校驗碼的前幾位數，而不是顯示全部 40 位數。
--relative-date 以相對時間格式顯示日期（例如：「2 weeks

ago」），而不是使用完整的日期格式。
--graph 在輸出的日誌旁邊顯示分支及合併歷史的 ASCII 圖形。
--pretty 以其它格式顯示提交。選項包括 oneline、short、full、fuller 及可自訂格式的

format。

限制日誌的輸出
除了輸出格式的選項以外，git log 還有一些有用的輸出限制選項——也就是讓你能夠只顯示一個子集合的
提交； 你先前已看過其中一個——用 -2 選項只顯示最後二筆提交， 事實上，你可以用 -<n>，其中 n 是任
意整數，用來顯示最後 n 筆提交； 實際上，你可能不太會那麼常用到它，因為 Git 預設把輸出導向分頁器，
所以你一次只能看到一頁的日誌輸出內容。

然而，像 --since 和 --until 這些限制時間的選項就很有用； 例如，以下命令列出最近兩週以來的提
交：

$ git log --since=2.weeks

這個命令支援各種格式——你可以指定特定的日期格式（例如："2008-01-15"），或者相對日期格式（例
如："2 years 1 day 3 minutes ago"）。

38

你也可以過濾列表中符合某些搜尋條件的提交； --author 選項允許你過濾特定作者，而 --grep
選項允許你以關鍵字搜尋提交訊息。 （注意：如果你想要同時比對作者及提交訊息，你必需加上 --all
-match，否則只要滿足其中一個條件的提交都會被列出來。）

另一個實用的選項是 -S，用來尋找所修改的內容中被加入或移除某字串的提交； 擧例，如果你想要找出最
後一個有加入或移除某個特定函數參照的提交，你可以使用：

$ git log -Sfunction_name

最後一個實用的 git log 過濾選項是路徑， 如果你指定一個目錄或檔名，你可以列出只對這些檔案有修改
記錄的提交； 這個選項永遠放在最後一個，並且通常使用二個連接號（--）將路徑與其它選項隔開。

我們在 Options to limit the output of git log 中列出這些選項和一些其它常用選項供你參考。

表格 3. Options to limit the output of git log
選項 說明
-(n) 只顯示最後 n 筆提交。
--since, --after 列出特定日期後的提交。
--until, --before 列出特定日期前的提交。
--author 列出作者名字符合指定字串的提交。
--committer 列出提交者名字符合指定字串的提交。
--grep 列出提交訊息中符合指定字串的提交。
-S 列出修改檔案中有加入或移除指定字串的提交。

例如：如果你想檢視 Git 原始碼的測試檔案中（譯註：它們都放在資料夾 t/），由 Junio Hamano 在 2008
年 10 月份所提交，但不包含「合併提交」的提交。可執行以下的命令：

$ git log --pretty="%h - %s" --author=gitster --since="2008-10-01" \

 --before="2008-11-01" --no-merges -- t/

5610e3b - Fix testcase failure when extended attributes are in use

acd3b9e - Enhance hold_lock_file_for_{update,append}() API

f563754 - demonstrate breakage of detached checkout with symbolic link

HEAD

d1a43f2 - reset --hard/read-tree --reset -u: remove unmerged new paths

51a94af - Fix "checkout --track -b newbranch" on detached HEAD

b0ad11e - pull: allow "git pull origin $something:$current_branch" into

an unborn branch

在 Git 原始碼接近 40,000 筆提交歷史記錄中，這個命令列出其中符合條件的 6 筆。

復原
在任何一個過程中，你都可能想要復原某些內容， 在這裡我們會回顧一些基本的工具用來復原你做過的修改
內容； 小心！因為復原操作不是永遠都可逆的， 這是少數在使用 Git 時，執行錯誤的動作會遺失資料的情
況。

39

一個常見的復原操作發生在當你太早提交（commit），接著才發現忘了加入某些檔案，或者寫錯了提交訊
息； 如果你想要重新提交，你可以在提交命令上使用 --amend 選項：

$ git commit --amend

這個命令會再次把預存區（staging area）拿來提交， 如果自從上次提交以來你沒有做過任何檔案修改（例
如：在上一次提交後，馬上執行此命令），那麼整個快照看起來會與上次提交的一模一樣，唯一有可能更動
的是提交訊息。

同樣用來提交訊息的文字編輯器會先啟動，並且已填好上一次提交的訊息內容； 你可以像往常一樣編輯這些
訊息，接著它會覆蓋掉上一次的提交。

例如：如果你提交後才意識到你想要把某些忘記預存（stage）的修改也一併加入到上一個提交中，你可以這
樣做：

$ git commit -m 'initial commit'

$ git add forgotten_file

$ git commit --amend

最終只會得到一個提交——第二次的提交取代了第一次提交的結果。

將已預存的檔案移出預存區
接下來的兩節會展示如何操作預存區和工作目錄中已修改的檔案； 用來顯示這二個區域狀態的命令也會好心
地提示你如何做復原操作， 例如：假設你已經修改了二個檔案，並且想要分別提交它們，但是你卻意外地使
用 git add * 把它們二個都預存了， 要如何將其中一個「移出預存區（unstage）」呢？ git status 命
令提示你：

$ git add *

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

 modified: CONTRIBUTING.md

在「Changes to be committed」文字正下方，說明了使用 git reset HEAD <file>... 將檔案移出預
存區； 因此，讓我們依循該建議將 CONTRIBUTING.md 檔案移出預存區：

40

$ git reset HEAD CONTRIBUTING.md

Unstaged changes after reset:

M CONTRIBUTING.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: CONTRIBUTING.md

這個命令有一點奇怪，不過它的確可行； CONTRIBUTING.md 檔案現在又回到了「修改」但「未預存
（unstaged）」的狀態。

筆記
雖然 git reset 命令加上 --hard 選項會讓它成為一個危險的命令，但在本例中工作目錄內
的檔案卻不會被修改到； 這是因為執行沒有附加選項的 git reset 命令並不危險——它只會
修改預存區。

關於 git reset 命令，到目前為止所有你需要知道的就只有這個神奇用法； 我們將在 Reset Demystified
中深入了解 reset 更多的細節，包括「它可以做什麼」以及「如何操控它做一些真正有趣的事情」。

復原被修改的檔案
當你不想要保留 CONTRIBUTING.md 檔案的修改時該怎麼辦？ 你如何才能輕易地復原它——將它還原到上次
提交時的樣子（或最初克隆時、或當初放到工作目錄時的版本）？ 很幸運的，git status 也告訴你該如何
做； 在上一個範例的輸出中，有修改而未預存的內容長得像這樣：

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: CONTRIBUTING.md

它相當明確地提示你如何捨棄工作目錄所做的修改， 讓我們跟著提示做：

41

$ git checkout -- CONTRIBUTING.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: README.md -> README

你可以看到那些修改已經被還原了。

重要
你必需明瞭一件很重要的事：git checkout -- <file> 是一個危險的命令， 你對那個檔
案所做的任何修改都會消失——Git 只是複製了另一個檔案來覆蓋它； 除非你很肯定地知道你
不想要那個檔案了，否則千萬不要使用這個命令。

如果你仍然想保留那個檔案所做的修改，但是某個當下需要先復原檔案，我們將會在 使用 Git 分支 中介紹
「收藏（stashing）」和「分支（branching）」，一般而言它們是比較好的做法。

切記，在 Git「已提交」的任何東西幾乎總是能夠被復原的， 即使是在被刪除的分支上曾經出現過的提交，
或者因為 --amend 而被覆蓋掉的提交，它們都是可以被復原的（詳見 Data Recovery 以了解資料復原）；
然而，從來沒被提交過的內容，失去後大概就沒辦法再救回來了。

與遠端協同工作
為了能在任意的 Git 專案上協同工作，你需要知道如何管理你的遠端版本庫。 遠端版本庫是指被託管在網際
網路或其他網路中的各種專案版本庫。 你可以擁有許多遠端版本庫；通常來說，它如果不是唯讀的，就是可
讀寫的。 與其它人協同工作包括了：「管理」遠端版本庫、以及將分享的資料「推送（push）」到端遠版
本庫、或者從遠端版本庫「拉取（pull）」分享的資料： 管理遠端版本庫則包括了了解如何：「新增」遠端
版本庫、「移除」不再有效的遠端版本庫、管理各式各樣的「遠端分支」、定義遠端分支是否被「追蹤」等
等。 我們將在這一節介紹這些遠端管理技巧。

顯示你的遠端
使用 git remote 命令可以檢視你已經設定好的遠端版本庫， 它會列出每個遠端版本庫的「簡稱」。 如果
你克隆（clone）了一個遠端版本庫，你至少看得到「origin」——它是 Git 給定的預設簡稱，用來代表被克
隆的來源。

$ git clone https://github.com/schacon/ticgit

Cloning into 'ticgit'...

remote: Reusing existing pack: 1857, done.

remote: Total 1857 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (1857/1857), 374.35 KiB | 268.00 KiB/s, done.

Resolving deltas: 100% (772/772), done.

Checking connectivity... done.

$ cd ticgit

$ git remote

origin

你也可以指定 -v 選項來顯示 Git 用來讀寫遠端簡稱時所用的網址。

42

$ git remote -v

origin https://github.com/schacon/ticgit (fetch)

origin https://github.com/schacon/ticgit (push)

如果遠端版本庫不止一個，這個命令會將它們全部列出來。 例如，一個版本庫內連結了許多其它協作者的遠
端版本庫，可能看起來就像這樣：

$ cd grit

$ git remote -v

bakkdoor https://github.com/bakkdoor/grit (fetch)

bakkdoor https://github.com/bakkdoor/grit (push)

cho45 https://github.com/cho45/grit (fetch)

cho45 https://github.com/cho45/grit (push)

defunkt https://github.com/defunkt/grit (fetch)

defunkt https://github.com/defunkt/grit (push)

koke git://github.com/koke/grit.git (fetch)

koke git://github.com/koke/grit.git (push)

origin git@github.com:mojombo/grit.git (fetch)

origin git@github.com:mojombo/grit.git (push)

這意味著我們可以很輕鬆地拉取任何協作者的貢獻； 我們可能對其中某些遠端版本庫還擁有推送權限，不過
我們不會在這裡詳述這個部分。

注意：這些遠端版本庫使用了不同的通訊協定；我們將會在 在伺服器上佈署 Git 對它有更多的說明。

新增遠端版本庫
我們在之前的章節中已經提過並給了一些範例來說明 clone 命令如何隱式地為你加入 origin 遠端； 而在
這裡將說明如何「明確地」新增一個遠端。 選一個你可以輕鬆引用的簡稱，用來代表要新增的遠端 Git 版本
庫，然後執行 git remote add <簡稱> <url> 來新增它：

$ git remote

origin

$ git remote add pb https://github.com/paulboone/ticgit

$ git remote -v

origin https://github.com/schacon/ticgit (fetch)

origin https://github.com/schacon/ticgit (push)

pb https://github.com/paulboone/ticgit (fetch)

pb https://github.com/paulboone/ticgit (push)

現在你可以在命令列中使用 pb 這個字串來代表整個網址； 例如，如果你想從 Paul 的版本庫中取得所有資
訊，而這些資訊並不存在於你的版本庫中，你可以執行 git fetch pb：

43

$ git fetch pb

remote: Counting objects: 43, done.

remote: Compressing objects: 100% (36/36), done.

remote: Total 43 (delta 10), reused 31 (delta 5)

Unpacking objects: 100% (43/43), done.

From https://github.com/paulboone/ticgit

 * [new branch] master -> pb/master

 * [new branch] ticgit -> pb/ticgit

現在 Paul 的 master 分支可以在本地端透過 pb/master 存取到（譯註：把 pb/master 想成 Paul 的
master 在你本地端的「分身」——實際上它被稱為「遠端追蹤分支（remote-tracking branch）」）——你
可以把它合併（merge）到你的其中一個分支；或者，如果你想要檢視它的話，可以在它身上檢出
（checkout）一個本地分支。 （我們將會在 使用 Git 分支 中詳細介紹什麼是分支以及如何使用它們。）

從你的遠端獲取或拉取
如同你剛剛所看到的，要從你的遠端專案中取得資料，你可以執行：

$ git fetch [remote-name]

這個命令會連到遠端專案，然後從遠端專案中將你還沒有的資料全部拉下來； 執行完成後，你應該會有那個
遠端版本庫中所有分支的參照（reference）（譯註：再次強調，遠端的分支在本地端的分身——遠端追蹤分
支），可以隨時用來合併或檢視。

如果你克隆了一個版本庫，clone 命令會自動增加一個「origin」來代表遠端版本庫； 所以，git fetch

origin 會獲取（fetch）在你克隆（或者最後一次獲取）之後任何被推送到伺服器上的新的工作內容。 很重
要的一點是：git fetch 命令只會下載資料到你的版本庫——它並不會自動合併你的任何工作內容，也不會
自動修改你正在修改的東西； 當你準備好合併你的工作內容時，你必需用手動的方式進行合併。

如果你的目前分支被設定為「追蹤」遠端上的分支（閱讀下一節以及 使用 Git 分支 以了解更多資訊），你便
可使用 git pull 命令來自動「獲取」並「合併」那個遠端分支到你目前的分支裡去； 由於 git clone
命令會「自動地」將本地分支 master 設定為「追蹤」遠端上的 master（無論預設分支叫什麼名稱。譯註：
只要是預設分支都會自動設定追踨行為，而 master 常常是預設分支），這可能會讓你有比較輕鬆自在的工
作流程： 只要執行 git pull 通常就會從你最初克隆的伺服器上獲取資料，然後試著自動合併到目前的分
支。

推送到你的遠端
當你想分享你的專案成果時，你必需將它推送到上游。 推送的命令很簡單：git push [remote-name]

[branch-name]。 如果你想要將 master 分支推送到 origin 伺服器上時（再次說明，克隆時通常會自動
地幫你設定好 master 和 origin 這二個名稱），那麼你可以執行這個命今將所有你完成的提交
（commit）推送回伺服器上。

$ git push origin master

只有在你對克隆來源的伺服器有寫入權限，並且在這個當下還沒有其它人推送過，這個命令才會成功； 如果
你和其它人同時做了克隆，然後他們先推送到上游，接著換你推送到上游，毫無疑問地你的推送會被拒絕；
你必需先獲取他們的工作內容，將其整併到你之前的工作內容，如此你才會被允許推送。 閱讀 使用 Git 分支

44

以了解更多關於「如何推送到遠端伺服器」的詳細資訊。

檢視遠端
如果你想要對一個特定遠端檢視更多資訊，你可以使用 git remote show [remote-name] 命令。 如果
你在執行這個命令中使用特定的簡稱，例如 origin，你會得到下面這個類似的訊息：

$ git remote show origin

* remote origin

 Fetch URL: https://github.com/schacon/ticgit

 Push URL: https://github.com/schacon/ticgit

 HEAD branch: master

 Remote branches:

 master tracked

 dev-branch tracked

 Local branch configured for 'git pull':

 master merges with remote master

 Local ref configured for 'git push':

 master pushes to master (up to date)

它同時列出了遠端版本庫的網址和「追蹤分支（tracking branch）」資訊。 這個命令很有用地告訴你：目
前分支是 master（譯注：HEAD 意味著目前的），如果你執行 git pull，它會在獲取所有遠端參照之後，
自動將遠端的 master 合併到你的 master 分支。 它也會列出所有已抓下來的遠端參照（譯註：此例中指
「master tracked」和「dev-branch tracked」）。

這是一個你很可能會遇到的簡單例子； 然而，當你更重度地使用 Git 後，你將會從 git remote show 中看
到更多的資訊：

45

$ git remote show origin

* remote origin

 URL: https://github.com/my-org/complex-project

 Fetch URL: https://github.com/my-org/complex-project

 Push URL: https://github.com/my-org/complex-project

 HEAD branch: master

 Remote branches:

 master tracked

 dev-branch tracked

 markdown-strip tracked

 issue-43 new (next fetch will store in

remotes/origin)

 issue-45 new (next fetch will store in

remotes/origin)

 refs/remotes/origin/issue-11 stale (use 'git remote prune' to

remove)

 Local branches configured for 'git pull':

 dev-branch merges with remote dev-branch

 master merges with remote master

 Local refs configured for 'git push':

 dev-branch pushes to dev-branch

(up to date)

 markdown-strip pushes to markdown-strip

(up to date)

 master pushes to master

(up to date)

這個命令顯示了當你在特定的分支上執行 git push 時，它將自動推送到哪一個遠端分支； 它也顯示了：哪
些遠端分支是在你的本地端還沒有的（譯註：new 屬性）、哪些你曾獲取過的遠端分支已經在遠端上被移除
了（譯註：stale 屬性）、哪些本地分支是有能力在執行 git pull 後自動和它們的遠端追蹤分支合併。

移除或重新命名遠端
你可以執行 git remote rename 來重新命名遠端的簡稱。 例如：如果你想要將 pb 重新命名為 paul，你
可以這樣使用 git remote rename：

$ git remote rename pb paul

$ git remote

origin

paul

值得一提的是：它會更新所有遠端追蹤分支的名稱； 曾經用來被參考的遠端追蹤分支 pb/master 現在改名
為 paul/master。

如果你因為某些原因想要移除一個遠端——你搬動了伺服器、或者不再使用某個特定的鏡像、或者某個貢獻
者不再貢獻了——你可以執行 git remote rm：

46

$ git remote rm paul

$ git remote

origin

標籤
 跟大多數的版本管理系統一樣，Git 有能力對專案歷史中比較特別的時間點貼標籤，來表示其重要性。 通常
大家都會用這個功能來標出發行版本，如 v1.0…等等。 在這個章節中，你將會學到如何列出所有的標籤，
如何建立新的標籤和各種不同的標籤類型。

列出你的標籤
想要列出 Git 中所有標籤的方法非常直覺。 只要輸入 git tag 如下：

$ git tag

v0.1

v1.3

這個指令將依字母序列出所有標籤；雖然說標籤用什麼方式列出不是很重要。

你也可以使用特定的 pattern 來搜尋標籤。 舉例來說，在 Git 原始碼的版本庫中，已經包含了超過 500 個標
籤。 如果你只想看到 1.8.5 系列的標籤，你可以執行以下指令：

$ git tag -l "v1.8.5*"

v1.8.5

v1.8.5-rc0

v1.8.5-rc1

v1.8.5-rc2

v1.8.5-rc3

v1.8.5.1

v1.8.5.2

v1.8.5.3

v1.8.5.4

v1.8.5.5

建立新的標籤
Git 主要使用兩種類型的標籤：輕量級標籤和有註解的標籤。

一個輕量級的標籤就像是一個不會移動的分支——這個標籤只會指向一個特定的提交。

然而，有註解的標籤，會在 Git 的資料庫中儲存成完整的物件。 它們將被計算校驗碼；包含貼標籤那個人的
名字、電子郵件和日期；能夠紀錄一個標籤訊息；並且可以簽署及透過 GNU Privacy Guard (GPG) 驗證。 通
常建議你可以建立一個有註解的標籤，以便你可以保留跟這個標籤有關的所有資訊；但是你如果只想要一個
暫時的標籤，或是因為某些原因不想保留額外的資訊，你也可以只用輕量級標籤。

47

有註解的標籤
 建立一個有註解的標籤很簡單。 最簡單的方法是在你建立標籤時，同時指定 -a 的選項如下：

$ git tag -a v1.4 -m "my version 1.4"

$ git tag

v0.1

v1.3

v1.4

指令中的 -m 選項後面同時指定了一個標籤訊息，這個訊息會和這個標籤一起保存。 如果你沒有為標籤指定
一個訊息，那麼 Git 會開啟你的編輯器以便你輸入。

當你使用 git show 指令時，你可以查看標籤的資訊，還有這個標籤所標記的提交資訊如下：

$ git show v1.4

tag v1.4

Tagger: Ben Straub <ben@straub.cc>

Date: Sat May 3 20:19:12 2014 -0700

my version 1.4

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

這樣就可以在提交資訊前顯示出標籤的資訊、標籤被建立的時間以及標籤的訊息。

輕量級標籤
 另外一種能標記提交的標籤是輕量級標籤。 這基本上是把該提交的校驗碼存在一個檔案中，不包含其他資
訊。 如果想要建立一個輕量級的標籤，不要指定 -a、-s 或 -m 的選項如下：

$ git tag v1.4-lw

$ git tag

v0.1

v1.3

v1.4

v1.4-lw

v1.5

此時如果對該標籤使用 git show，你將不會看到這個標籤的額外資訊。 這個指令就只會顯示標籤所在的提
交資訊：

48

$ git show v1.4-lw

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

對以前的提交貼標籤
你也可以對過去的提交貼標籤。 假設你的提交歷史看起來如下：

$ git log --pretty=oneline

15027957951b64cf874c3557a0f3547bd83b3ff6 Merge branch 'experiment'

a6b4c97498bd301d84096da251c98a07c7723e65 beginning write support

0d52aaab4479697da7686c15f77a3d64d9165190 one more thing

6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch 'experiment'

0b7434d86859cc7b8c3d5e1dddfed66ff742fcbc added a commit function

4682c3261057305bdd616e23b64b0857d832627b added a todo file

166ae0c4d3f420721acbb115cc33848dfcc2121a started write support

9fceb02d0ae598e95dc970b74767f19372d61af8 updated rakefile

964f16d36dfccde844893cac5b347e7b3d44abbc commit the todo

8a5cbc430f1a9c3d00faaeffd07798508422908a updated readme

現在，假設你忘記在專案的「updated rakefile」提交貼 v1.2 的標籤。 你可以在後來再補貼標籤。 要在那個
提交上面貼標籤，你需要在指令後面指定那個提交的校驗碼（可以省略後半段）：

$ git tag -a v1.2 9fceb02

你可以看到你已經在那個提交上面貼標籤了：

49

$ git tag

v0.1

v1.2

v1.3

v1.4

v1.4-lw

v1.5

$ git show v1.2

tag v1.2

Tagger: Scott Chacon <schacon@gee-mail.com>

Date: Mon Feb 9 15:32:16 2009 -0800

version 1.2

commit 9fceb02d0ae598e95dc970b74767f19372d61af8

Author: Magnus Chacon <mchacon@gee-mail.com>

Date: Sun Apr 27 20:43:35 2008 -0700

 updated rakefile

...

分享標籤
git push 指令預設不會傳送標籤到遠端伺服器。 在你建立標籤後，你必須明確的要求 Git 將標籤推送到共
用的伺服器上面。 這個動作就像是在分享遠端分支一樣——你可以執行 git push origin [tagname]。

$ git push origin v1.5

Counting objects: 14, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (12/12), done.

Writing objects: 100% (14/14), 2.05 KiB | 0 bytes/s, done.

Total 14 (delta 3), reused 0 (delta 0)

To git@github.com:schacon/simplegit.git

 * [new tag] v1.5 -> v1.5

如果想要一次推送很多標籤，也可以在使用 git push 指令的時候加上 --tags 選項。 這將會把你所有不
在伺服器上面的標籤傳送給遠端伺服器。

$ git push origin --tags

Counting objects: 1, done.

Writing objects: 100% (1/1), 160 bytes | 0 bytes/s, done.

Total 1 (delta 0), reused 0 (delta 0)

To git@github.com:schacon/simplegit.git

 * [new tag] v1.4 -> v1.4

 * [new tag] v1.4-lw -> v1.4-lw

現在，當其他人從版本庫克隆或拉取時，他們就能同時拿到你所貼的標籤，

50

檢出標籤
在 Git 中你不能真的檢出一個標籤，因為它們並不能像分支一樣四處移動。 如果你希望工作目錄和版本庫中
特定的標籤版本完全一樣，你可以使用 git checkout -b [branchname] [tagname] 在該標籤上建立
一個新分支：

$ git checkout -b version2 v2.0.0

Switched to a new branch 'version2'

當然，如果在建立新分支以後又進行了一次提交，version2 分支將會和 v2.0.0 標籤有所差異，因為這個
分支已經因為你的提交而改變了，請特別小心。

Git Aliases
 在結束「Git 基礎」這個章節以前，在此想和你分享一些使用 Git 的技巧，讓你能夠更簡易且友善的使用
Git——別名（alias）。 在本書的後面章節，我們不會再提到，也不會假設你有使用別名的技巧。 但是你可
能會需要知道如何使用它。

如果你只打了某個指令的一部份，Git 並不會自動推測出你想要的指令。 如果你懶得輸入完整的 Git 指令，
你可以輕易的使用 git config 來替指令設定別名。 下面有一些你可能會想要設定別名的範例：

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

舉其中一個例子來說，這樣的設定意味著你可以只打 git ci 而不需要打 git commit。 隨著你深入使用
Git，你將會發現某些指令用的很頻繁，不要猶豫，馬上建立新的指令別名。

這個非常有用的技術還能用來創造一些你覺得應該存在的指令。 舉例來說，為了提高 unstage 檔案的方便
性，你可以加入你自己的 unstage 別名：

$ git config --global alias.unstage 'reset HEAD --'

而且這個 unstage 別名會讓以下兩個指令有相同的功用：

$ git unstage fileA

$ git reset HEAD -- fileA

這樣看起來更加簡單明瞭了。 此外，大家通常還會新增一個 last 指令如下：

$ git config --global alias.last 'log -1 HEAD'

如此一來，你可以更簡易的看到最後的提交訊息：

51

$ git last

commit 66938dae3329c7aebe598c2246a8e6af90d04646

Author: Josh Goebel <dreamer3@example.com>

Date: Tue Aug 26 19:48:51 2008 +0800

 test for current head

 Signed-off-by: Scott Chacon <schacon@example.com>

如你所見，Git 會將別名直接取代成你別名內設定的指令。 然而，你可能會想要執行一個外部指令，而非 git
下的子指令。 在這個情況下，你需要在指令的開頭加個 ! 字元。 這個技巧在你如果想為 Git 倉儲撰寫自製工
具時很有用。 我們可以用以下的範例設定 git visual 執行 gitk：

$ git config --global alias.visual '!gitk'

總結
現在，您可以完成所有基本的 Git 本地操作——創建或者克隆一個倉儲、修改檔案、預存並提交這些更改、
瀏覽倉儲過去的所有更改歷史。 下一步，本書將介紹 Git 的殺手級功能：Git 的分支模型。

52

使用 Git 分支
 幾乎每一種版本控制系統（Version Control System，以下簡稱 VCS）都支援某種形式的分支（branch）
功能， 使用分支意味著你可以從開發主線上分離開來，然後在不影響主線的情況下繼續工作； 在很多 VCS
中，這是個昂貴的過程，常常需要對原始程式碼目錄建立一個完整的副本，對大型專案來說會花費很長時
間。

有人把 Git 的分支模型視為它的「殺手級功能」，正是因為它而讓 Git 在 VCS 社群中顯得與眾不同。 它有何
特別之處呢？ Git 的分支簡直是難以置信的羽量級，新建分支的操作幾乎可以在瞬間完成，並且一般來說切
換不同分支也很快； 跟其它的 VCS 不一樣的地方是 Git 鼓勵在工作流程中頻繁地使用分支與合併
（merge），即使一天之內進行許多次都沒問題。 理解並掌握這個特性後，它會給你一個強大而獨特的工
具，從此完全地改變你的開發方式。

簡述分支
為了理解 Git 分支（branch）的使用方式，我們需要回顧一下 Git 是如何保存資料的。

或許你還記得 開始 的內容，Git 保存的不是變更集或者差異內容，而是一系列快照。

當你製造一個提交（commit）時，Git 會儲存一個提交物件，該物件內容包含一個指標，用來代表已預存的
快照內容； 這個物件內容還包含「作者名字和電子郵件」、「你輸入的訊息內容」、「指向前一個提交的指
標（該提交的親代提交）」：沒有親代（parent）提交表示它是初始的第一個提交，一般情況下只有一個親
代提交，超過一個親代提交表示它是從二個以上的分支合併而來的。

為了具體說明，讓我們假設你有一個目錄包含了三個檔案，你預存（stage）並提交了它們； 檔案預存操作
會對每一個檔案內容（譯註：請注意，只有檔案「內容」）計算雜湊值（即 開始 中提到的 SHA-1 雜湊
值），然後把那個檔案內容版本保存到 Git 版本庫中（Git 把它們視為 blob 類型的物件），再將這個雜湊值
寫入預存區（staging area）：

$ git add README test.rb LICENSE

$ git commit -m 'The initial commit of my project'

當使用 git commit 建立一個提交時，Git 會先計算每一個子目錄（本例中則只有專案根目錄）的雜湊值，
然後在 Git 版本庫中將這些目錄記錄為樹（tree）物件； 之後 Git 建立提交物件，它除了包含相關提交資訊
以外，還包含著指向專案根目錄的樹物件指標，如此它就可以在需要的時候重建此次快照內容。

你的 Git 版本庫現在有五個物件：三個 blob 物件用來儲存檔案內容、一個樹物件用來列出目錄的內容並紀錄
各個檔案所對應的 blob 物件、一個提交用來記錄根目錄的樹物件和其他提交資訊。

53

圖表 9. 單個提交在版本庫中的資料結構

如果你做一些修改並再次提交，這次的提交會再包含一個指向上次提交的指標（譯注：即下圖中的 parent
欄位）。

圖表 10. 提交和它們的親代提交

Git 分支其實只是一個指向某提交的可移動輕量級指標， Git 預設分支名稱是 master， 隨著不斷地製作提
交，master 分支會為你一直指向最後一個提交， 它在每次提交的時候都會自動向前移動。

筆記
「master」在 Git 中並不是一個特殊的分支， 它和其它分支並無分別， 之所以幾乎每個版本
庫裡都會有這個分支的原因是 git init 命令的預設行為會產生它，而大部分的人就這麼直
接使用它。

54

圖表 11. 分支及其提交歷史

建立一個新的分支
 建立一個新分支會發生什麼事呢？ 答案很簡單，建立一個新的、可移動的指標； 比如新建一個 testing 分
支， 可以使用 git branch 命令：

$ git branch testing

這會在目前提交上新建一個指標。

圖表 12. 二個分支都指向同一系列的提交歷史

Git 如何知道你目前在哪個分支上工作的呢？ 其實它保存了一個名為 HEAD 的特別指標； 請注意它和你可能
慣用的其他 VCSs 裡的 HEAD 概念大不相同，比如 Subversion 或 CVS； 在 Git 中，它就是一個指向你正在工
作中的本地分支的指標（譯注：HEAD 等於「目前的」）， 所以在這個例子中，你仍然在 master 分支上工
作； 執行 git branch 命令，只是「建立」一個新的分支——它並不會切換到這個分支。

55

圖表 13. HEAD 指向一個分支

你可以很輕鬆地看到分支指標指向何處，只需透過一個簡單的 git log 命令， 加上 --decorate 選項。

$ git log --oneline --decorate

f30ab (HEAD -> master, testing) add feature #32 - ability to add new

formats to the central interface

34ac2 Fixed bug #1328 - stack overflow under certain conditions

98ca9 The initial commit of my project

你可以看到「master」和「testing」分支就顯示在 f30ab 提交旁邊。

在分支之間切換
 要切換到一個已經存在的分支，你可以執行 git checkout 命令， 讓我們切換到新的 testing 分支：

$ git checkout testing

這會移動 HEAD 並指向 testing 分支。

56

圖表 14. 被 HEAD 指向的分支是目前分支

這樣做有什麼意義呢？ 好吧！讓我們再提交一次：

$ vim test.rb

$ git commit -a -m 'made a change'

圖表 15. 當再次提交時，被 HEAD 指向的分支會往前走

非常有趣，現在 testing 分支向前移動了，而 master 分支仍然指向當初在執行 git checkout 時所在的
提交， 讓我們切回 master 分支看看：

$ git checkout master

57

圖表 16. 當你檢出時，HEAD 會移動

這條命令做了兩件事， 它把 HEAD 指標移回去並指向 master 分支，然後把工作目錄中的檔案換成 master
分支所指向的快照內容； 也就是說，現在開始所做的改動，將基於專案中較舊的版本，然後與其它提交歷史
分離開來； 它實際上是取消你在 testing 分支裡所做的修改，這樣你就可以往不同方向前進。

筆記

切換分支會修改工作目錄裡的檔案
重要的是要注意：當你在 Git 中切換分支時，工作目錄內的檔案將會被修改； 如果切換到舊
分支，你的工作目錄會回復到看起來就像當初你最後一次在這個分支提交時的樣子。 如果 Git
無法很乾淨地切換過去，它就不會讓你切換過去。

讓我們做一些修改並再次提交：

$ vim test.rb

$ git commit -a -m 'made other changes'

現在你的專案歷史開始分離了（詳見 分離的歷史）； 你建立並切換到新分支，在上面進行了一些工作，然後
切換回到主分支進行了另外一些工作， 雙方的改變分別隔離在不同的分支裡：你可以在不同分支裡反覆切
換，並在時機成熟時把它們合併到一起； 而所有這些工作只需要簡單的 branch、checkout、commit 命
令。

58

圖表 17. 分離的歷史

你一樣可以從 git log 中輕鬆地看出這件事， 執行 git log --oneline --decorate --graph
--all，它會印出你的提交歷史，顯示你的分支指標在哪裡，以及歷史如何被分離開來。

$ git log --oneline --decorate --graph --all

* c2b9e (HEAD, master) made other changes

| * 87ab2 (testing) made a change

|/

* f30ab add feature #32 - ability to add new formats to the

* 34ac2 fixed bug #1328 - stack overflow under certain conditions

* 98ca9 initial commit of my project

由於 Git 分支實際上只是一個檔案，該檔案內容是這個分支指向的提交的雜湊值（40 個字元長度的 SHA-1 字
串），所以建立和銷毀一個分支就變得非常廉價； 新建一個分支就是向一個檔寫入 41 個位元組（40 個字元
外加一個換行符號）那樣地簡單和快速。

這樣的分支功能和大多數舊 VCS 的分支功能形成了鮮明的對比，有些分支功能甚至需要複製專案中全部的檔
案到另一個資料夾， 而根據專案檔案數量和大小的不同，可能花費的時間快則幾秒，慢則數分鐘；而在 Git
中幾乎都在瞬間完成。 還有，因為每次提交時都記錄了親代資訊，將來要合併分支時，它通常會幫我們自動
並輕鬆地找到適當的合併基礎； 這樣子的特性在無形間鼓勵了開發者頻繁地建立和使用分支。

讓我們來瞧一瞧為什麼你應該要這麼做。

分支和合併的基本用法
讓我們來看一個你在現實生活中，有可能會用到的分支（branch）與合併（merge）工作流程的簡單範例，
你做了以下動作：

59

1. 開發一個網站。
2. 建立一個分支以實現一個新故事。
3. 在這個分支上進行開發。

此時你接到一個電話，有個很危急的問題需要緊急修正（hotfix）， 你可以按照下面的方式處理：

1. 切換到發佈產品用的分支。
2. 在同一個提交上建立一個新分支，在這個分支上修正問題。
3. 通過測試後，切回發佈產品用的分支，將修正用的分支合併進來，然後再推送（push）出去以發佈產

品。
4. 切換到之前實現新需求的分支以繼續工作。

分支的基本用法
 首先，我們假設你正在開發你的專案，並且已經有一些提交（commit）了。

圖表 18. 一個簡單的提交歷史

無論你的公司使用的議題追蹤系統（issue-tracking system）是哪一套，你決定要修正其中的議題 #53； 要
同時新建並切換到新分支，你可以在執行 git checkout 時加上 -b 選項：

$ git checkout -b iss53

Switched to a new branch "iss53"

它相當於下面這兩條命令：

$ git branch iss53

$ git checkout iss53

60

圖表 19. 建立一個新分支指標

你開始開發網站，並做了一些提交； 因為你檢出（checkout）了這個分支（也就是 HEAD 指標正指向
它），iss53 分支也隨之向前推進：

$ vim index.html

$ git commit -a -m 'added a new footer [issue 53]'

圖表 20. 分支 iss53 會隨工作進展向前推進

現在你接到電話，那個網站有一個問題需要立即修正； 有了 Git ，你就不用把你的緊急修正連同 iss53 尚未
完成的內容一起部署（deploy）到正式環境；你也不用為了正確地套用修正而先花一大堆功夫回復之前
iss53 的修改； 唯一需要做的只是切換回發佈產品用的 master 分支。

然而，在切換分支之前，留意一下你的工作目錄或預存區（staging area）裡是否有還沒提交的內容，它可
能會和你即要檢出的分支產生衝突（conflict），Git 會因此而不讓你切換分支； 所以切換分支的時候最好先
保持一個乾淨的工作區域。 稍後會在 Stashing and Cleaning 中介紹幾個繞過這種問題的辦法（分別叫做
「使用收藏（stashing）」和「提交的修訂方法（commit amending）」）。 目前先讓我們假設你已經提
交了所有的變更，因此你可以切回 master 分支了：

61

$ git checkout master

Switched to branch 'master'

此時工作目錄中的內容和你在解決問題 #53 之前的內容一模一樣，你可以集中精力進行緊急修正了； 很重要
的一點需要牢記：當你切換分支時，Git 會重置（reset）工作目錄內容，就像回到你在這個分支最後一次提
交後的內容， 它會自動地增加、刪除和修改檔案以確保工作目錄的內容和當時的內容完全一樣。

接下來開始緊急修正； 讓我們建立一個緊急修正用的分支來進行工作，直到完成它：

$ git checkout -b hotfix

Switched to a new branch 'hotfix'

$ vim index.html

$ git commit -a -m 'fixed the broken email address'

[hotfix 1fb7853] fixed the broken email address

 1 file changed, 2 insertions(+)

圖表 21. 基於 master 的緊急修正分支

你可以跑一些測試以確保該修正是你想要的，然後切回 master 分支並把它合併進來，再部署到產品上； 用
git merge 命令來進行合併：

$ git checkout master

$ git merge hotfix

Updating f42c576..3a0874c

Fast-forward

 index.html | 2 ++

 1 file changed, 2 insertions(+)

注意合併時有一個「Fast-forward」字眼； 由於你要合併的分支 hotfix 所指向的提交 C4 直接超前了提交
C2，Git 於是簡單地把分支指標向前推進； 換句話說，如果想要合併的提交可以直接往回追溯歷史到目前所
在的提交，Git 會因為沒有需要合併的工作而簡單地把指標向前推進——這就是所謂的「快進（fast-

62

forward）」。

現在你的修改已經含在 master 分支所指向的提交的快照中，你可以部署該修正了。

圖表 22. master 被快進到 hotfix

在那個超級重要的修正被部署以後，你準備要切回到之前被中斷而正在做的工作； 然而在那之前，你可以先
刪除 hotfix，因為你不再需要它了——master 也指向相同的提交； 使用 git branch 的 -d 選項執行刪
除操作：

$ git branch -d hotfix

Deleted branch hotfix (3a0874c).

現在你可以切回到之前用來解決議題 #53 且仍在進展中的分支以繼續工作：

$ git checkout iss53

Switched to branch "iss53"

$ vim index.html

$ git commit -a -m 'finished the new footer [issue 53]'

[iss53 ad82d7a] finished the new footer [issue 53]

1 file changed, 1 insertion(+)

63

圖表 23. 繼續在分支 iss53 上工作

這裡值得注意的是之前 hotfix 分支的修改內容尚未包含到 iss53 分支的檔案中； 如果需要納入那個修
正，你可以用 git merge master 把 master 分支合併到 iss53 分支；或者等 iss53 分支完成之後，再
將它合併到 master。

合併的基本用法
 你已經完成了議題 #53 的工作，並準備好將它合併到 master 分支； 要完成這件事，你需要將 iss53 分

支合併到 master 分支，實際操作和之前合併 hotfix 分支時差不多， 只需切回合併目的地的 master 分
支，然後執行 git merge 命令：

$ git checkout master

Switched to branch 'master'

$ git merge iss53

Merge made by the 'recursive' strategy.

index.html | 1 +

1 file changed, 1 insertion(+)

這次的合併和之前合併 hotfix 的情況看起來有點不一樣； 在這種情況下，你的開發歷史是從一個較早的點
便開始分離開來， 由於目前所在的提交（譯註：C4）並不是被合併的分支（譯註：iss53，它指向 C5）的
直接祖先，Git 必需進行一些處理； 就此例而言，Git 會用兩個分支末端的快照（譯註：C4、C5）以及它們
的共同祖先（譯註：C2）進行一次簡單的三方合併（three-way merge）。

64

圖表 24. 典型的合併會用到的三個快照

不同於將分支指標向前推進，Git 會對三方合併後的結果產生一個新的快照，並自動建立一個指向這個快照
的提交（譯註：C6）。 這個提交被稱為「合併提交（merge commit）」，特別的是它的親代（parent）超
過一個（譯註：C4 和 C5）。

圖表 25. 一個合併提交

值得一提的是 Git 會決定哪個共同祖先才是最佳合併基準；這一點和一些較舊的版控工具有所不同，像是
CVS 或 Subversion（1.5 以前的版本），它們需要開發者自己手動找出最佳合併基準； 這讓 Git 的合併操作
比起其他系統都要簡單許多。

既然你的工作成果已經合併了，也就不再需要 iss53 分支了， 你可以在議題追蹤系統中關閉該議題，然後
刪除這個分支：

$ git branch -d iss53

合併衝突的基本解法
 有時候合併過程並不會如此順利， 如果在不同的分支中都修改了同一個檔案的同一部分，Git 就無法乾淨地

65

合併它們； 如果你在解決議題 #53 的過程中修改了 hotfix
中也修改過的部分，將得到類似下面的「合併衝突」結果：

$ git merge iss53

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

Git 沒有自動產生新的合併提交， 它會暫停下來等你解決（resolve）衝突； 在合併衝突發生後的任何時候，
如果你要看看哪些檔案還沒有合併，可以使用 git status：

$ git status

On branch master

You have unmerged paths.

 (fix conflicts and run "git commit")

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

它會列出所有有合併衝突且仍未解決的檔案（譯註：列在 Unmerged paths: 下面）； Git 會在有衝突的檔
案裡加入標準的「衝突解決（conflict-resolution）」標記，因此你可以手動開啟它們以解決這些衝突； 你
的檔案會包含類似下面這樣子的區段：

<<<<<<< HEAD:index.html

<div id="footer">contact : email.support@github.com</div>

=======

<div id="footer">

 please contact us at support@github.com

</div>

>>>>>>> iss53:index.html

可以看到 ======= 隔開的上半部分是 HEAD（即 master 分支，在執行合併命令前所切換過去的分支）中的
內容，下半部分則是在 iss53 分支中的內容； 解決衝突的辦法無非是二選一，或者由你自己合併內容； 比
如你可以把這整段內容替換成以下內容而解決這個衝突：

<div id="footer">

please contact us at email.support@github.com

</div>

這個解決方案分別採納了兩個分支中的各一部分內容，並且完整地移除了 <<<<<<<、======= 和 >>>>>>>
這些標記行。 在解決了每個衝突檔案裡的每個衝突後，對每個檔案執行 git add 會將它們標記為已解決狀
態， 因為預存（stage）動作代表了衝突已經解決。

66

如果你想用圖形介面的工具來解決這些衝突，你可以執行 git mergetool
，它會呼叫一個適當的視覺化合併工具並引導你解決衝突：

$ git mergetool

This message is displayed because 'merge.tool' is not configured.

See 'git mergetool --tool-help' or 'git help config' for more details.

'git mergetool' will now attempt to use one of the following tools:

opendiff kdiff3 tkdiff xxdiff meld tortoisemerge gvimdiff diffuse

diffmerge ecmerge p4merge araxis bc3 codecompare vimdiff emerge

Merging:

index.html

Normal merge conflict for 'index.html':

 {local}: modified file

 {remote}: modified file

Hit return to start merge resolution tool (opendiff):

如果不想用預設的合併工具（因為在 Mac 上執行了該命令，Git 預設選擇了 opendiff），你可以在「one
of the following tools」列表中找到可使用的合併工具， 然後只要輸入你想使用的工具名稱即可。

筆記 如果你需要更多進階的工具用來解決刁鑽的合併衝突，我們將在 Advanced Merging 介紹更
多合併操作方法。

退出合併工具以後，Git 會詢問你合併是否成功， 如果回答「是」，它會幫你把相關檔案預存起來，將狀態
標記為已解決； 你可以再次執行 git status 來確認所有衝突都已經解決：

$ git status

On branch master

All conflicts fixed but you are still merging.

 (use "git commit" to conclude merge)

Changes to be committed:

 modified: index.html

如果你滿意這個結果，並且確認了所有衝突都已經解決也預存了，就可以用 git commit 來完成這次合併提
交； 預設的提交訊息看起來像這樣：

67

Merge branch 'iss53'

Conflicts:

 index.html

#

It looks like you may be committing a merge.

If this is not correct, please remove the file

.git/MERGE_HEAD

and try again.

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

On branch master

All conflicts fixed but you are still merging.

#

Changes to be committed:

modified: index.html

#

如果解決衝突的理由不是那麼明顯，或是想要幫助將來的人理解為何你要這樣解決衝突，你可以在訊息中提
供更多的細節來說明。

分支管理
 到目前為止，你已經建立、合併和刪除過分支（branch）；讓我們再來看一些分支管理工具，這將會在你
開始全程使用分支時派上用場。

git branch 命令不僅能建立和刪除分支， 如果不加任何參數，你將會得到所有分支的簡易清單：

$ git branch

 iss53

* master

 testing

注意 master 分支前面的 * 字元，它表示目前所檢出（checkout）的分支（換句話說，HEAD 指向這個分
支）； 這意味著如果你現在提交，master 分支將隨之向前移動。 若要查看各個分支最後一個提交，執行
git branch -v：

$ git branch -v

 iss53 93b412c fix javascript issue

* master 7a98805 Merge branch 'iss53'

 testing 782fd34 add scott to the author list in the readmes

--merged 和 --no-merged 這兩個有用的選項，可以從該清單中篩選出已經合併或尚未合併到目前分支的
分支。 使用 git branch --merged 來查看哪些分支已被合併到目前分支：

68

$ git branch --merged

 iss53

* master

由於之前的 iss53 已經被合併了，所以會在列表中看到它； 在這個列表中沒有被標記 * 的分支通常都可以
用 git branch -d 刪除；你已經把它們的工作內容整併到其他分支，所以刪掉它們也不會有所損失。

查看所有包含未合併工作的分支，可以運行 git branch --no-merged：

$ git branch --no-merged

 testing

這顯示了你其它的分支； 由於它包含了還未合併的工作，嘗試使用 git branch -d 刪除該分支將會失敗：

$ git branch -d testing

error: The branch 'testing' is not fully merged.

If you are sure you want to delete it, run 'git branch -D testing'.

如果你確實想要刪除該分支並丟掉那個工作成果，可以用 -D 選項來強制執行，就像上面訊息中所提示的。

分支工作流程
Now that you have the basics of branching and merging down, what can or should you do with them?
In this section, we’ll cover some common workflows that this lightweight branching makes possible,
so you can decide if you would like to incorporate it into your own development cycle.

長期分支
 Because Git uses a simple three-way merge, merging from one branch into another multiple times
over a long period is generally easy to do. This means you can have several branches that are always
open and that you use for different stages of your development cycle; you can merge regularly from
some of them into others.

Many Git developers have a workflow that embraces this approach, such as having only code that is
entirely stable in their master branch – possibly only code that has been or will be released. They
have another parallel branch named develop or next that they work from or use to test stability – it
isn’t necessarily always stable, but whenever it gets to a stable state, it can be merged into master.
It’s used to pull in topic branches (short-lived branches, like your earlier iss53 branch) when
they’re ready, to make sure they pass all the tests and don’t introduce bugs.

In reality, we’re talking about pointers moving up the line of commits you’re making. The stable
branches are farther down the line in your commit history, and the bleeding-edge branches are farther
up the history.

69

圖表 26. A linear view of progressive-stability branching

It’s generally easier to think about them as work silos, where sets of commits graduate to a more
stable silo when they’re fully tested.

圖表 27. A “silo” view of progressive-stability branching

You can keep doing this for several levels of stability. Some larger projects also have a proposed or pu
(proposed updates) branch that has integrated branches that may not be ready to go into the next or
master branch. The idea is that your branches are at various levels of stability; when they reach a
more stable level, they’re merged into the branch above them. Again, having multiple long-running
branches isn’t necessary, but it’s often helpful, especially when you’re dealing with very large or
complex projects.

主題分支
 Topic branches, however, are useful in projects of any size. A topic branch is a short-lived branch that
you create and use for a single particular feature or related work. This is something you’ve likely
never done with a VCS before because it’s generally too expensive to create and merge branches. But
in Git it’s common to create, work on, merge, and delete branches several times a day.

You saw this in the last section with the iss53 and hotfix branches you created. You did a few
commits on them and deleted them directly after merging them into your main branch. This technique
allows you to context-switch quickly and completely – because your work is separated into silos where
all the changes in that branch have to do with that topic, it’s easier to see what has happened during
code review and such. You can keep the changes there for minutes, days, or months, and merge them
in when they’re ready, regardless of the order in which they were created or worked on.

Consider an example of doing some work (on master), branching off for an issue (iss91), working on
it for a bit, branching off the second branch to try another way of handling the same thing (iss91v2),
going back to your master branch and working there for a while, and then branching off there to do
some work that you’re not sure is a good idea (dumbidea branch). Your commit history will look
something like this:

70

圖表 28. Multiple topic branches

Now, let’s say you decide you like the second solution to your issue best (iss91v2); and you showed
the dumbidea branch to your coworkers, and it turns out to be genius. You can throw away the original
iss91 branch (losing commits C5 and C6) and merge in the other two. Your history then looks like this:

71

圖表 29. History after merging dumbidea and iss91v2

We will go into more detail about the various possible workflows for your Git project in 分散式的 Git, so
before you decide which branching scheme your next project will use, be sure to read that chapter.

It’s important to remember when you’re doing all this that these branches are completely local.
When you’re branching and merging, everything is being done only in your Git repository – no server
communication is happening.

遠端分支
 Remote references are references (pointers) in your remote repositories, including branches, tags,

and so on. You can get a full list of remote references explicitly with git ls-remote [remote], or
git remote show [remote] for remote branches as well as more information. Nevertheless, a more

72

common way is to take advantage of remote-tracking branches.

Remote-tracking branches are references to the state of remote branches. They’re local references
that you can’t move; they’re moved automatically for you whenever you do any network
communication. Remote-tracking branches act as bookmarks to remind you where the branches in
your remote repositories were the last time you connected to them.

They take the form (remote)/(branch). For instance, if you wanted to see what the master branch
on your origin remote looked like as of the last time you communicated with it, you would check the
origin/master branch. If you were working on an issue with a partner and they pushed up an iss53
branch, you might have your own local iss53 branch; but the branch on the server would point to the
commit at origin/iss53.

This may be a bit confusing, so let’s look at an example. Let’s say you have a Git server on your
network at git.ourcompany.com. If you clone from this, Git’s clone command automatically
names it origin for you, pulls down all its data, creates a pointer to where its master branch is, and
names it origin/master locally. Git also gives you your own local master branch starting at the
same place as origin’s master branch, so you have something to work from.

筆記

“origin” is not special
Just like the branch name “master” does not have any special meaning in Git, neither
does “origin”. While “master” is the default name for a starting branch when you
run git init which is the only reason it’s widely used, “origin” is the default name
for a remote when you run git clone. If you run git clone -o booyah instead, then
you will have booyah/master as your default remote branch.

73

圖表 30. Server and local repositories after cloning

If you do some work on your local master branch, and, in the meantime, someone else pushes to
git.ourcompany.com and updates its master branch, then your histories move forward differently.
Also, as long as you stay out of contact with your origin server, your origin/master pointer doesn’t
move.

74

圖表 31. Local and remote work can diverge

To synchronize your work, you run a git fetch origin command. This command looks up which
server “origin” is (in this case, it’s git.ourcompany.com), fetches any data from it that you don’t
yet have, and updates your local database, moving your origin/master pointer to its new, more up-
to-date position.

75

圖表 32. git fetch updates your remote references

To demonstrate having multiple remote servers and what remote branches for those remote projects
look like, let’s assume you have another internal Git server that is used only for development by one
of your sprint teams. This server is at git.team1.ourcompany.com. You can add it as a new remote
reference to the project you’re currently working on by running the git remote add command as
we covered in Git 基礎. Name this remote teamone, which will be your shortname for that whole URL.

76

圖表 33. Adding another server as a remote

Now, you can run git fetch teamone to fetch everything the remote teamone server has that you
don’t have yet. Because that server has a subset of the data your origin server has right now, Git
fetches no data but sets a remote-tracking branch called teamone/master to point to the commit
that teamone has as its master branch.

77

圖表 34. Remote tracking branch for teamone/master

Pushing
 When you want to share a branch with the world, you need to push it up to a remote that you have
write access to. Your local branches aren’t automatically synchronized to the remotes you write to –
you have to explicitly push the branches you want to share. That way, you can use private branches for
work you don’t want to share, and push up only the topic branches you want to collaborate on.

If you have a branch named serverfix that you want to work on with others, you can push it up the
same way you pushed your first branch. Run git push <remote> <branch>:

$ git push origin serverfix

Counting objects: 24, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (15/15), done.

Writing objects: 100% (24/24), 1.91 KiB | 0 bytes/s, done.

Total 24 (delta 2), reused 0 (delta 0)

To https://github.com/schacon/simplegit

 * [new branch] serverfix -> serverfix

This is a bit of a shortcut. Git automatically expands the serverfix branchname out to
refs/heads/serverfix:refs/heads/serverfix, which means, “Take my serverfix local branch
and push it to update the remote’s serverfix branch.” We’ll go over the refs/heads/ part in detail
in Git Internals, but you can generally leave it off. You can also do git push origin

78

serverfix:serverfix, which does the same thing – it says, “Take my serverfix and make it the
remote’s serverfix.” You can use this format to push a local branch into a remote branch that is
named differently. If you didn’t want it to be called serverfix on the remote, you could instead run
git push origin serverfix:awesomebranch to push your local serverfix branch to the
awesomebranch branch on the remote project.

筆記

Don’t type your password every time
If you’re using an HTTPS URL to push over, the Git server will ask you for your
username and password for authentication. By default it will prompt you on the
terminal for this information so the server can tell if you’re allowed to push.

If you don’t want to type it every single time you push, you can set up a “credential
cache”. The simplest is just to keep it in memory for a few minutes, which you can
easily set up by running git config --global credential.helper cache.

For more information on the various credential caching options available, see
Credential Storage.

The next time one of your collaborators fetches from the server, they will get a reference to where the
server’s version of serverfix is under the remote branch origin/serverfix:

$ git fetch origin

remote: Counting objects: 7, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 3 (delta 0)

Unpacking objects: 100% (3/3), done.

From https://github.com/schacon/simplegit

 * [new branch] serverfix -> origin/serverfix

It’s important to note that when you do a fetch that brings down new remote-tracking branches, you
don’t automatically have local, editable copies of them. In other words, in this case, you don’t have
a new serverfix branch – you only have an origin/serverfix pointer that you can’t modify.

To merge this work into your current working branch, you can run git merge origin/serverfix. If
you want your own serverfix branch that you can work on, you can base it off your remote-tracking
branch:

$ git checkout -b serverfix origin/serverfix

Branch serverfix set up to track remote branch serverfix from origin.

Switched to a new branch 'serverfix'

This gives you a local branch that you can work on that starts where origin/serverfix is.

Tracking Branches
 Checking out a local branch from a remote-tracking branch automatically creates what is called a

“tracking branch” (and the branch it tracks is called an “upstream branch”). Tracking branches are
local branches that have a direct relationship to a remote branch. If you’re on a tracking branch and

79

type git pull, Git automatically knows which server to fetch from and branch to merge into.

When you clone a repository, it generally automatically creates a master branch that tracks
origin/master. However, you can set up other tracking branches if you wish – ones that track
branches on other remotes, or don’t track the master branch. The simple case is the example you
just saw, running git checkout -b [branch] [remotename]/[branch]. This is a common
enough operation that git provides the --track shorthand:

$ git checkout --track origin/serverfix

Branch serverfix set up to track remote branch serverfix from origin.

Switched to a new branch 'serverfix'

In fact, this is so common that there’s even a shortcut for that shortcut. If the branch name you’re
trying to checkout (a) doesn’t exist and (b) exactly matches a name on only one remote, Git will
create a tracking branch for you:

$ git checkout serverfix

Branch serverfix set up to track remote branch serverfix from origin.

Switched to a new branch 'serverfix'

To set up a local branch with a different name than the remote branch, you can easily use the first
version with a different local branch name:

$ git checkout -b sf origin/serverfix

Branch sf set up to track remote branch serverfix from origin.

Switched to a new branch 'sf'

Now, your local branch sf will automatically pull from origin/serverfix.

If you already have a local branch and want to set it to a remote branch you just pulled down, or want
to change the upstream branch you’re tracking, you can use the -u or --set-upstream-to option
to git branch to explicitly set it at any time.

$ git branch -u origin/serverfix

Branch serverfix set up to track remote branch serverfix from origin.

筆記

Upstream shorthand
When you have a tracking branch set up, you can reference its upstream branch with the
@{upstream} or @{u} shorthand. So if you’re on the master branch and it’s tracking
origin/master, you can say something like git merge @{u} instead of git merge
origin/master if you wish.

If you want to see what tracking branches you have set up, you can use the -vv option to git branch.
This will list out your local branches with more information including what each branch is tracking and
if your local branch is ahead, behind or both.

80

$ git branch -vv

 iss53 7e424c3 [origin/iss53: ahead 2] forgot the brackets

 master 1ae2a45 [origin/master] deploying index fix

* serverfix f8674d9 [teamone/server-fix-good: ahead 3, behind 1] this

should do it

 testing 5ea463a trying something new

So here we can see that our iss53 branch is tracking origin/iss53 and is “ahead” by two,
meaning that we have two commits locally that are not pushed to the server. We can also see that our
master branch is tracking origin/master and is up to date. Next we can see that our serverfix
branch is tracking the server-fix-good branch on our teamone server and is ahead by three and
behind by one, meaning that there is one commit on the server we haven’t merged in yet and three
commits locally that we haven’t pushed. Finally we can see that our testing branch is not tracking
any remote branch.

It’s important to note that these numbers are only since the last time you fetched from each server.
This command does not reach out to the servers, it’s telling you about what it has cached from these
servers locally. If you want totally up to date ahead and behind numbers, you’ll need to fetch from all
your remotes right before running this. You could do that like this: git fetch --all; git branch
-vv

Pulling
 While the git fetch command will fetch down all the changes on the server that you don’t have
yet, it will not modify your working directory at all. It will simply get the data for you and let you merge
it yourself. However, there is a command called git pull which is essentially a git fetch
immediately followed by a git merge in most cases. If you have a tracking branch set up as
demonstrated in the last section, either by explicitly setting it or by having it created for you by the
clone or checkout commands, git pull will look up what server and branch your current branch is
tracking, fetch from that server and then try to merge in that remote branch.

Generally it’s better to simply use the fetch and merge commands explicitly as the magic of git
pull can often be confusing.

刪除遠端分支
 Suppose you’re done with a remote branch – say you and your collaborators are finished with a
feature and have merged it into your remote’s master branch (or whatever branch your stable
codeline is in). You can delete a remote branch using the --delete option to git push. If you want to
delete your serverfix branch from the server, you run the following:

$ git push origin --delete serverfix

To https://github.com/schacon/simplegit

 - [deleted] serverfix

Basically all this does is remove the pointer from the server. The Git server will generally keep the data
there for a while until a garbage collection runs, so if it was accidentally deleted, it’s often easy to
recover.

81

衍合
 In Git, there are two main ways to integrate changes from one branch into another: the merge and the
rebase. In this section you’ll learn what rebasing is, how to do it, why it’s a pretty amazing tool,
and in what cases you won’t want to use it.

基本衍合
If you go back to an earlier example from 合併的基本用法, you can see that you diverged your work and
made commits on two different branches.

圖表 35. Simple divergent history

The easiest way to integrate the branches, as we’ve already covered, is the merge command. It
performs a three-way merge between the two latest branch snapshots (C3 and C4) and the most
recent common ancestor of the two (C2), creating a new snapshot (and commit).

圖表 36. Merging to integrate diverged work history

However, there is another way: you can take the patch of the change that was introduced in C4 and
reapply it on top of C3. In Git, this is called rebasing. With the rebase command, you can take all the
changes that were committed on one branch and replay them on another one.

82

In this example, you’d run the following:

$ git checkout experiment

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: added staged command

It works by going to the common ancestor of the two branches (the one you’re on and the one
you’re rebasing onto), getting the diff introduced by each commit of the branch you’re on, saving
those diffs to temporary files, resetting the current branch to the same commit as the branch you are
rebasing onto, and finally applying each change in turn.

圖表 37. Rebasing the change introduced in C4 onto C3

At this point, you can go back to the master branch and do a fast-forward merge.

$ git checkout master

$ git merge experiment

圖表 38. Fast-forwarding the master branch

Now, the snapshot pointed to by C4' is exactly the same as the one that was pointed to by C5 in the
merge example. There is no difference in the end product of the integration, but rebasing makes for a
cleaner history. If you examine the log of a rebased branch, it looks like a linear history: it appears that
all the work happened in series, even when it originally happened in parallel.

Often, you’ll do this to make sure your commits apply cleanly on a remote branch – perhaps in a
project to which you’re trying to contribute but that you don’t maintain. In this case, you’d do
your work in a branch and then rebase your work onto origin/master when you were ready to

83

submit your patches to the main project. That way, the maintainer doesn’t have to do any
integration work – just a fast-forward or a clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s the last of the
rebased commits for a rebase or the final merge commit after a merge, is the same snapshot – it’s
only the history that is different. Rebasing replays changes from one line of work onto another in the
order they were introduced, whereas merging takes the endpoints and merges them together.

更多有趣的衍合
You can also have your rebase replay on something other than the rebase target branch. Take a history
like A history with a topic branch off another topic branch, for example. You branched a topic branch
(server) to add some server-side functionality to your project, and made a commit. Then, you
branched off that to make the client-side changes (client) and committed a few times. Finally, you
went back to your server branch and did a few more commits.

圖表 39. A history with a topic branch off another topic branch

Suppose you decide that you want to merge your client-side changes into your mainline for a release,
but you want to hold off on the server-side changes until it’s tested further. You can take the changes
on client that aren’t on server (C8 and C9) and replay them on your master branch by using the
--onto option of git rebase:

$ git rebase --onto master server client

This basically says, “Check out the client branch, figure out the patches from the common ancestor of
the client and server branches, and then replay them onto master.” It’s a bit complex, but the
result is pretty cool.

84

圖表 40. Rebasing a topic branch off another topic branch

Now you can fast-forward your master branch (see Fast-forwarding your master branch to include the
client branch changes):

$ git checkout master

$ git merge client

圖表 41. Fast-forwarding your master branch to include the client branch changes

Let’s say you decide to pull in your server branch as well. You can rebase the server branch onto the
master branch without having to check it out first by running git rebase [basebranch]
[topicbranch] – which checks out the topic branch (in this case, server) for you and replays it onto
the base branch (master):

$ git rebase master server

This replays your server work on top of your master work, as shown in Rebasing your server branch
on top of your master branch.

85

圖表 42. Rebasing your server branch on top of your master branch

Then, you can fast-forward the base branch (master):

$ git checkout master

$ git merge server

You can remove the client and server branches because all the work is integrated and you don’t
need them anymore, leaving your history for this entire process looking like Final commit history:

$ git branch -d client

$ git branch -d server

圖表 43. Final commit history

使用衍和的危險
 Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in a single line:

Do not rebase commits that exist outside your repository.

If you follow that guideline, you’ll be fine. If you don’t, people will hate you, and you’ll be scorned
by friends and family.

When you rebase stuff, you’re abandoning existing commits and creating new ones that are similar
but different. If you push commits somewhere and others pull them down and base work on them,
and then you rewrite those commits with git rebase and push them up again, your collaborators
will have to re-merge their work and things will get messy when you try to pull their work back into
yours.

Let’s look at an example of how rebasing work that you’ve made public can cause problems.
Suppose you clone from a central server and then do some work off that. Your commit history looks
like this:

86

圖表 44. Clone a repository, and base some work on it

Now, someone else does more work that includes a merge, and pushes that work to the central server.
You fetch it and merge the new remote branch into your work, making your history look something
like this:

圖表 45. Fetch more commits, and merge them into your work

Next, the person who pushed the merged work decides to go back and rebase their work instead; they

87

do a git push --force to overwrite the history on the server. You then fetch from that server,
bringing down the new commits.

圖表 46. Someone pushes rebased commits, abandoning commits you’ve based your work on

Now you’re both in a pickle. If you do a git pull, you’ll create a merge commit which includes
both lines of history, and your repository will look like this:

圖表 47. You merge in the same work again into a new merge commit

If you run a git log when your history looks like this, you’ll see two commits that have the same
author, date, and message, which will be confusing. Furthermore, if you push this history back up to

88

the server, you’ll reintroduce all those rebased commits to the central server, which can further
confuse people. It’s pretty safe to assume that the other developer doesn’t want C4 and C6 to be in
the history; that’s why they rebased in the first place.

Rebase When You Rebase
If you do find yourself in a situation like this, Git has some further magic that might help you out. If
someone on your team force pushes changes that overwrite work that you’ve based work on, your
challenge is to figure out what is yours and what they’ve rewritten.

It turns out that in addition to the commit SHA-1 checksum, Git also calculates a checksum that is
based just on the patch introduced with the commit. This is called a “patch-id”.

If you pull down work that was rewritten and rebase it on top of the new commits from your partner,
Git can often successfully figure out what is uniquely yours and apply them back on top of the new
branch.

For instance, in the previous scenario, if instead of doing a merge when we’re at Someone pushes
rebased commits, abandoning commits you’ve based your work on we run git rebase
teamone/master, Git will:

• Determine what work is unique to our branch (C2, C3, C4, C6, C7)
• Determine which are not merge commits (C2, C3, C4)
• Determine which have not been rewritten into the target branch (just C2 and C3, since C4 is the

same patch as C4')
• Apply those commits to the top of teamone/master

So instead of the result we see in You merge in the same work again into a new merge commit, we
would end up with something more like Rebase on top of force-pushed rebase work..

圖表 48. Rebase on top of force-pushed rebase work.

89

This only works if C4 and C4' that your partner made are almost exactly the same patch. Otherwise the
rebase won’t be able to tell that it’s a duplicate and will add another C4-like patch (which will
probably fail to apply cleanly, since the changes would already be at least somewhat there).

You can also simplify this by running a git pull --rebase instead of a normal git pull. Or you
could do it manually with a git fetch followed by a git rebase teamone/master in this case.

If you are using git pull and want to make --rebase the default, you can set the pull.rebase
config value with something like git config --global pull.rebase true.

If you treat rebasing as a way to clean up and work with commits before you push them, and if you
only rebase commits that have never been available publicly, then you’ll be fine. If you rebase
commits that have already been pushed publicly, and people may have based work on those commits,
then you may be in for some frustrating trouble, and the scorn of your teammates.

If you or a partner does find it necessary at some point, make sure everyone knows to run git pull
--rebase to try to make the pain after it happens a little bit simpler.

衍合及合併的異同
 Now that you’ve seen rebasing and merging in action, you may be wondering which one is better.

Before we can answer this, let’s step back a bit and talk about what history means.

One point of view on this is that your repository’s commit history is a record of what actually
happened. It’s a historical document, valuable in its own right, and shouldn’t be tampered with.
From this angle, changing the commit history is almost blasphemous; you’re lying about what
actually transpired. So what if there was a messy series of merge commits? That’s how it happened,
and the repository should preserve that for posterity.

The opposing point of view is that the commit history is the story of how your project was made. You
wouldn’t publish the first draft of a book, and the manual for how to maintain your software
deserves careful editing. This is the camp that uses tools like rebase and filter-branch to tell the story
in the way that’s best for future readers.

Now, to the question of whether merging or rebasing is better: hopefully you’ll see that it’s not that
simple. Git is a powerful tool, and allows you to do many things to and with your history, but every
team and every project is different. Now that you know how both of these things work, it’s up to you
to decide which one is best for your particular situation.

In general the way to get the best of both worlds is to rebase local changes you’ve made but
haven’t shared yet before you push them in order to clean up your story, but never rebase anything
you’ve pushed somewhere.

總結
我們已介紹 Git 基本的分支和合併， 你應該對於「建立並切換到新分支」、「在不同分支之間切換」、「合
併本地分支」感到相當輕鬆寫意； 你應該也能夠做到「把想要分享的分支推送到共用伺服器上」、「在共享
的分支上與其他人協作」、「在分享自己的分支前先進行變基（rebase）」。 下一章我們將介紹架設自己的
Git 版本庫託管伺服器所需要的知識。

90

伺服器上的 Git
 At this point, you should be able to do most of the day-to-day tasks for which you’ll be using Git.
However, in order to do any collaboration in Git, you’ll need to have a remote Git repository.
Although you can technically push changes to and pull changes from individuals' repositories, doing
so is discouraged because you can fairly easily confuse what they’re working on if you’re not
careful. Furthermore, you want your collaborators to be able to access the repository even if your
computer is offline – having a more reliable common repository is often useful. Therefore, the
preferred method for collaborating with someone is to set up an intermediate repository that you both
have access to, and push to and pull from that.

Running a Git server is fairly straightforward. First, you choose which protocols you want your server
to communicate with. The first section of this chapter will cover the available protocols and the pros
and cons of each. The next sections will explain some typical setups using those protocols and how to
get your server running with them. Last, we’ll go over a few hosted options, if you don’t mind
hosting your code on someone else’s server and don’t want to go through the hassle of setting up
and maintaining your own server.

If you have no interest in running your own server, you can skip to the last section of the chapter to see
some options for setting up a hosted account and then move on to the next chapter, where we discuss
the various ins and outs of working in a distributed source control environment.

A remote repository is generally a bare repository – a Git repository that has no working directory.
Because the repository is only used as a collaboration point, there is no reason to have a snapshot
checked out on disk; it’s just the Git data. In the simplest terms, a bare repository is the contents of
your project’s .git directory and nothing else.

通訊協定
Git can use four major protocols to transfer data: Local, HTTP, Secure Shell (SSH) and Git. Here we’ll
discuss what they are and in what basic circumstances you would want (or not want) to use them.

本機通訊協定
 The most basic is the Local protocol, in which the remote repository is in another directory on disk.
This is often used if everyone on your team has access to a shared filesystem such as an NFS mount, or
in the less likely case that everyone logs in to the same computer. The latter wouldn’t be ideal,
because all your code repository instances would reside on the same computer, making a catastrophic
loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from a local file-based
repository. To clone a repository like this or to add one as a remote to an existing project, use the path
to the repository as the URL. For example, to clone a local repository, you can run something like this:

$ git clone /opt/git/project.git

Or you can do this:

91

$ git clone file:///opt/git/project.git

Git operates slightly differently if you explicitly specify file:// at the beginning of the URL. If you just
specify the path, Git tries to use hardlinks or directly copy the files it needs. If you specify file://, Git
fires up the processes that it normally uses to transfer data over a network which is generally a lot less
efficient method of transferring the data. The main reason to specify the file:// prefix is if you want
a clean copy of the repository with extraneous references or objects left out – generally after an import
from another version-control system or something similar (see Git Internals for maintenance tasks).
We’ll use the normal path here because doing so is almost always faster.

To add a local repository to an existing Git project, you can run something like this:

$ git remote add local_proj /opt/git/project.git

Then, you can push to and pull from that remote as though you were doing so over a network.

優點

The pros of file-based repositories are that they’re simple and they use existing file permissions and
network access. If you already have a shared filesystem to which your whole team has access, setting
up a repository is very easy. You stick the bare repository copy somewhere everyone has shared access
to and set the read/write permissions as you would for any other shared directory. We’ll discuss how
to export a bare repository copy for this purpose in 在伺服器上佈署 Git.

This is also a nice option for quickly grabbing work from someone else’s working repository. If you
and a co-worker are working on the same project and they want you to check something out, running
a command like git pull /home/john/project is often easier than them pushing to a remote
server and you pulling down.

缺點

The cons of this method are that shared access is generally more difficult to set up and reach from
multiple locations than basic network access. If you want to push from your laptop when you’re at
home, you have to mount the remote disk, which can be difficult and slow compared to network-
based access.

It’s important to mention that this isn’t necessarily the fastest option if you’re using a shared
mount of some kind. A local repository is fast only if you have fast access to the data. A repository on
NFS is often slower than the repository over SSH on the same server, allowing Git to run off local disks
on each system.

Finally, this protocol does not protect the repository against accidental damage. Every user has full
shell access to the "remote" directory, and there is nothing preventing them from changing or
removing internal Git files and corrupting the repository.

HTTP 通訊協定
Git can communicate over HTTP in two different modes. Prior to Git 1.6.6 there was only one way it
could do this which was very simple and generally read-only. In version 1.6.6 a new, smarter protocol

92

was introduced that involved Git being able to intelligently negotiate data transfer in a manner similar
to how it does over SSH. In the last few years, this new HTTP protocol has become very popular since
it’s simpler for the user and smarter about how it communicates. The newer version is often referred
to as the “Smart” HTTP protocol and the older way as “Dumb” HTTP. We’ll cover the newer
“smart” HTTP protocol first.

Smart HTTP

 The “smart” HTTP protocol operates very similarly to the SSH or Git protocols but runs over
standard HTTP/S ports and can use various HTTP authentication mechanisms, meaning it’s often
easier on the user than something like SSH, since you can use things like username/password basic
authentication rather than having to set up SSH keys.

It has probably become the most popular way to use Git now, since it can be set up to both serve
anonymously like the git:// protocol, and can also be pushed over with authentication and
encryption like the SSH protocol. Instead of having to set up different URLs for these things, you can
now use a single URL for both. If you try to push and the repository requires authentication (which it
normally should), the server can prompt for a username and password. The same goes for read access.

In fact, for services like GitHub, the URL you use to view the repository online (for example,
“https://github.com/schacon/simplegit[]”) is the same URL you can use to clone and, if you have
access, push over.

Dumb HTTP

 If the server does not respond with a Git HTTP smart service, the Git client will try to fall back to the
simpler “dumb” HTTP protocol. The Dumb protocol expects the bare Git repository to be served like
normal files from the web server. The beauty of the Dumb HTTP protocol is the simplicity of setting it
up. Basically, all you have to do is put a bare Git repository under your HTTP document root and set up
a specific post-update hook, and you’re done (See Git Hooks). At that point, anyone who can
access the web server under which you put the repository can also clone your repository. To allow
read access to your repository over HTTP, do something like this:

$ cd /var/www/htdocs/

$ git clone --bare /path/to/git_project gitproject.git

$ cd gitproject.git

$ mv hooks/post-update.sample hooks/post-update

$ chmod a+x hooks/post-update

That’s all. The post-update hook that comes with Git by default runs the appropriate command
(git update-server-info) to make HTTP fetching and cloning work properly. This command is run
when you push to this repository (over SSH perhaps); then, other people can clone via something like

$ git clone https://example.com/gitproject.git

In this particular case, we’re using the /var/www/htdocs path that is common for Apache setups,
but you can use any static web server – just put the bare repository in its path. The Git data is served as
basic static files (see Git Internals for details about exactly how it’s served).

Generally you would either choose to run a read/write Smart HTTP server or simply have the files

93

accessible as read-only in the Dumb manner. It’s rare to run a mix of the two services.

優點

We’ll concentrate on the pros of the Smart version of the HTTP protocol.

The simplicity of having a single URL for all types of access and having the server prompt only when
authentication is needed makes things very easy for the end user. Being able to authenticate with a
username and password is also a big advantage over SSH, since users don’t have to generate SSH
keys locally and upload their public key to the server before being able to interact with it. For less
sophisticated users, or users on systems where SSH is less common, this is a major advantage in
usability. It is also a very fast and efficient protocol, similar to the SSH one.

You can also serve your repositories read-only over HTTPS, which means you can encrypt the content
transfer; or you can go so far as to make the clients use specific signed SSL certificates.

Another nice thing is that HTTP/S are such commonly used protocols that corporate firewalls are often
set up to allow traffic through these ports.

缺點

Git over HTTP/S can be a little more tricky to set up compared to SSH on some servers. Other than
that, there is very little advantage that other protocols have over the “Smart” HTTP protocol for
serving Git.

If you’re using HTTP for authenticated pushing, providing your credentials is sometimes more
complicated than using keys over SSH. There are however several credential caching tools you can
use, including Keychain access on OSX and Credential Manager on Windows, to make this pretty
painless. Read Credential Storage to see how to set up secure HTTP password caching on your system.

SSH 通訊協定
 A common transport protocol for Git when self-hosting is over SSH. This is because SSH access to
servers is already set up in most places – and if it isn’t, it’s easy to do. SSH is also an authenticated
network protocol; and because it’s ubiquitous, it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify ssh:// URL like this:

$ git clone ssh://user@server/project.git

Or you can use the shorter scp-like syntax for the SSH protocol:

$ git clone user@server:project.git

You can also not specify a user, and Git assumes the user you’re currently logged in as.

優點

The pros of using SSH are many. First, SSH is relatively easy to set up – SSH daemons are
commonplace, many network admins have experience with them, and many OS distributions are set
up with them or have tools to manage them. Next, access over SSH is secure – all data transfer is

94

encrypted and authenticated. Last, like the HTTP/S, Git and Local protocols, SSH is efficient, making
the data as compact as possible before transferring it.

缺點

The negative aspect of SSH is that you can’t serve anonymous access of your repository over it.
People must have access to your machine over SSH to access it, even in a read-only capacity, which
doesn’t make SSH access conducive to open source projects. If you’re using it only within your
corporate network, SSH may be the only protocol you need to deal with. If you want to allow
anonymous read-only access to your projects and also want to use SSH, you’ll have to set up SSH for
you to push over but something else for others to fetch over.

The Git Protocol
 Next is the Git protocol. This is a special daemon that comes packaged with Git; it listens on a
dedicated port (9418) that provides a service similar to the SSH protocol, but with absolutely no
authentication. In order for a repository to be served over the Git protocol, you must create the git-
daemon-export-ok file – the daemon won’t serve a repository without that file in it – but other than
that there is no security. Either the Git repository is available for everyone to clone or it isn’t. This
means that there is generally no pushing over this protocol. You can enable push access; but given the
lack of authentication, if you turn on push access, anyone on the internet who finds your project’s
URL could push to your project. Suffice it to say that this is rare.

優點

The Git protocol is often the fastest network transfer protocol available. If you’re serving a lot of
traffic for a public project or serving a very large project that doesn’t require user authentication for
read access, it’s likely that you’ll want to set up a Git daemon to serve your project. It uses the same
data-transfer mechanism as the SSH protocol but without the encryption and authentication
overhead.

缺點

The downside of the Git protocol is the lack of authentication. It’s generally undesirable for the Git
protocol to be the only access to your project. Generally, you’ll pair it with SSH or HTTPS access for
the few developers who have push (write) access and have everyone else use git:// for read-only
access. It’s also probably the most difficult protocol to set up. It must run its own daemon, which
requires xinetd configuration or the like, which isn’t always a walk in the park. It also requires
firewall access to port 9418, which isn’t a standard port that corporate firewalls always allow. Behind
big corporate firewalls, this obscure port is commonly blocked.

在伺服器上佈署 Git
Now we’ll cover setting up a Git service running these protocols on your own server.

筆記

Here we’ll be demonstrating the commands and steps needed to do basic, simplified
installations on a Linux based server, though it’s also possible to run these services on
Mac or Windows servers. Actually setting up a production server within your
infrastructure will certainly entail differences in security measures or operating system
tools, but hopefully this will give you the general idea of what’s involved.

95

In order to initially set up any Git server, you have to export an existing repository into a new bare
repository – a repository that doesn’t contain a working directory. This is generally straightforward
to do. In order to clone your repository to create a new bare repository, you run the clone command
with the --bare option. By convention, bare repository directories end in .git, like so:

$ git clone --bare my_project my_project.git

Cloning into bare repository 'my_project.git'...

done.

You should now have a copy of the Git directory data in your my_project.git directory.

This is roughly equivalent to something like

$ cp -Rf my_project/.git my_project.git

There are a couple of minor differences in the configuration file; but for your purpose, this is close to
the same thing. It takes the Git repository by itself, without a working directory, and creates a directory
specifically for it alone.

把 Bare Repository 放到伺服器上
Now that you have a bare copy of your repository, all you need to do is put it on a server and set up
your protocols. Let’s say you’ve set up a server called git.example.com that you have SSH access
to, and you want to store all your Git repositories under the /srv/git directory. Assuming that
/srv/git exists on that server, you can set up your new repository by copying your bare repository
over:

$ scp -r my_project.git user@git.example.com:/srv/git

At this point, other users who have SSH access to the same server which has read-access to the
/srv/git directory can clone your repository by running

$ git clone user@git.example.com:/srv/git/my_project.git

If a user SSHs into a server and has write access to the /srv/git/my_project.git directory, they
will also automatically have push access.

Git will automatically add group write permissions to a repository properly if you run the git init
command with the --shared option.

$ ssh user@git.example.com

$ cd /srv/git/my_project.git

$ git init --bare --shared

You see how easy it is to take a Git repository, create a bare version, and place it on a server to which

96

you and your collaborators have SSH access. Now you’re ready to collaborate on the same project.

It’s important to note that this is literally all you need to do to run a useful Git server to which several
people have access – just add SSH-able accounts on a server, and stick a bare repository somewhere
that all those users have read and write access to. You’re ready to go – nothing else needed.

In the next few sections, you’ll see how to expand to more sophisticated setups. This discussion will
include not having to create user accounts for each user, adding public read access to repositories,
setting up web UIs and more. However, keep in mind that to collaborate with a couple of people on a
private project, all you need is an SSH server and a bare repository.

小型安裝
If you’re a small outfit or are just trying out Git in your organization and have only a few developers,
things can be simple for you. One of the most complicated aspects of setting up a Git server is user
management. If you want some repositories to be read-only to certain users and read/write to others,
access and permissions can be a bit more difficult to arrange.

SSH 存取

 If you have a server to which all your developers already have SSH access, it’s generally easiest to
set up your first repository there, because you have to do almost no work (as we covered in the last
section). If you want more complex access control type permissions on your repositories, you can
handle them with the normal filesystem permissions of the operating system your server runs.

If you want to place your repositories on a server that doesn’t have accounts for everyone on your
team whom you want to have write access, then you must set up SSH access for them. We assume that
if you have a server with which to do this, you already have an SSH server installed, and that’s how
you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to set up accounts for
everybody, which is straightforward but can be cumbersome. You may not want to run adduser and
set temporary passwords for every user.

A second method is to create a single git user on the machine, ask every user who is to have write
access to send you an SSH public key, and add that key to the ~/.ssh/authorized_keys file of your
new git user. At that point, everyone will be able to access that machine via the git user. This doesn’t
affect the commit data in any way – the SSH user you connect as doesn’t affect the commits you’ve
recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server or some other
centralized authentication source that you may already have set up. As long as each user can get shell
access on the machine, any SSH authentication mechanism you can think of should work.

產生你的 SSH 公鑰
 That being said, many Git servers authenticate using SSH public keys. In order to provide a public key,
each user in your system must generate one if they don’t already have one. This process is similar
across all operating systems. First, you should check to make sure you don’t already have a key. By
default, a user’s SSH keys are stored in that user’s ~/.ssh directory. You can easily check to see if
you have a key already by going to that directory and listing the contents:

97

$ cd ~/.ssh

$ ls

authorized_keys2 id_dsa known_hosts

config id_dsa.pub

You’re looking for a pair of files named something like id_dsa or id_rsa and a matching file with a
.pub extension. The .pub file is your public key, and the other file is your private key. If you don’t
have these files (or you don’t even have a .ssh directory), you can create them by running a program
called ssh-keygen, which is provided with the SSH package on Linux/Mac systems and comes with
Git for Windows:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/schacon/.ssh/id_rsa):

Created directory '/home/schacon/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/schacon/.ssh/id_rsa.

Your public key has been saved in /home/schacon/.ssh/id_rsa.pub.

The key fingerprint is:

d0:82:24:8e:d7:f1:bb:9b:33:53:96:93:49:da:9b:e3 schacon@mylaptop.local

First it confirms where you want to save the key (.ssh/id_rsa), and then it asks twice for a
passphrase, which you can leave empty if you don’t want to type a password when you use the key.

Now, each user that does this has to send their public key to you or whoever is administrating the Git
server (assuming you’re using an SSH server setup that requires public keys). All they have to do is
copy the contents of the .pub file and email it. The public keys look something like this:

$ cat ~/.ssh/id_rsa.pub

ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAQEAklOUpkDHrfHY17SbrmTIpNLTGK9Tjom/BWDSU

GPl+nafzlHDTYW7hdI4yZ5ew18JH4JW9jbhUFrviQzM7xlELEVf4h9lFX5QVkbPppSwg0cda

3

Pbv7kOdJ/MTyBlWXFCR+HAo3FXRitBqxiX1nKhXpHAZsMciLq8V6RjsNAQwdsdMFvSlVK/7X

A

t3FaoJoAsncM1Q9x5+3V0Ww68/eIFmb1zuUFljQJKprrX88XypNDvjYNby6vw/Pb0rwert/E

n

mZ+AW4OZPnTPI89ZPmVMLuayrD2cE86Z/il8b+gw3r3+1nKatmIkjn2so1d01QraTlMqVSsb

x

NrRFi9wrf+M7Q== schacon@mylaptop.local

For a more in-depth tutorial on creating an SSH key on multiple operating systems, see the GitHub
guide on SSH keys at https://help.github.com/articles/generating-ssh-keys.

98

https://help.github.com/articles/generating-ssh-keys

設定伺服器
Let’s walk through setting up SSH access on the server side. In this example, you’ll use the
authorized_keys method for authenticating your users. We also assume you’re running a standard
Linux distribution like Ubuntu. First, you create a git user and a .ssh directory for that user.

$ sudo adduser git

$ su git

$ cd

$ mkdir .ssh && chmod 700 .ssh

$ touch .ssh/authorized_keys && chmod 600 .ssh/authorized_keys

Next, you need to add some developer SSH public keys to the authorized_keys file for the git user.
Let’s assume you have some trusted public keys and have saved them to temporary files. Again, the
public keys look something like this:

$ cat /tmp/id_rsa.john.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCB007n/ww+ouN4gSLKssMxXnBOvf9LGt4L

ojG6rs6hPB09j9R/T17/x4lhJA0F3FR1rP6kYBRsWj2aThGw6HXLm9/5zytK6Ztg3RPKK+4k

Yjh6541NYsnEAZuXz0jTTyAUfrtU3Z5E003C4oxOj6H0rfIF1kKI9MAQLMdpGW1GYEIgS9Ez

Sdfd8AcCIicTDWbqLAcU4UpkaX8KyGlLwsNuuGztobF8m72ALC/nLF6JLtPofwFBlgc+myiv

O7TCUSBdLQlgMVOFq1I2uPWQOkOWQAHukEOmfjy2jctxSDBQ220ymjaNsHT4kgtZg2AYYgPq

dAv8JggJICUvax2T9va5 gsg-keypair

You just append them to the git user’s authorized_keys file in its .ssh directory:

$ cat /tmp/id_rsa.john.pub >> ~/.ssh/authorized_keys

$ cat /tmp/id_rsa.josie.pub >> ~/.ssh/authorized_keys

$ cat /tmp/id_rsa.jessica.pub >> ~/.ssh/authorized_keys

Now, you can set up an empty repository for them by running git init with the --bare option,
which initializes the repository without a working directory:

$ cd /opt/git

$ mkdir project.git

$ cd project.git

$ git init --bare

Initialized empty Git repository in /opt/git/project.git/

Then, John, Josie, or Jessica can push the first version of their project into that repository by adding it
as a remote and pushing up a branch. Note that someone must shell onto the machine and create a
bare repository every time you want to add a project. Let’s use gitserver as the hostname of the
server on which you’ve set up your git user and repository. If you’re running it internally, and you
set up DNS for gitserver to point to that server, then you can use the commands pretty much as is
(assuming that myproject is an existing project with files in it):

99

on John's computer

$ cd myproject

$ git init

$ git add .

$ git commit -m 'initial commit'

$ git remote add origin git@gitserver:/opt/git/project.git

$ git push origin master

At this point, the others can clone it down and push changes back up just as easily:

$ git clone git@gitserver:/opt/git/project.git

$ cd project

$ vim README

$ git commit -am 'fix for the README file'

$ git push origin master

With this method, you can quickly get a read/write Git server up and running for a handful of
developers.

You should note that currently all these users can also log into the server and get a shell as the git
user. If you want to restrict that, you will have to change the shell to something else in the passwd file.

You can easily restrict the git user to only doing Git activities with a limited shell tool called git-
shell that comes with Git. If you set this as your git user’s login shell, then the git user can’t
have normal shell access to your server. To use this, specify git-shell instead of bash or csh for your
user’s login shell. To do so, you must first add git-shell to /etc/shells if it’s not already there:

$ cat /etc/shells # see if `git-shell` is already in there. If not...

$ which git-shell # make sure git-shell is installed on your system.

$ sudo vim /etc/shells # and add the path to git-shell from last

command

Now you can edit the shell for a user using chsh <username>:

$ sudo chsh git # and enter the path to git-shell, usually:

/usr/bin/git-shell

Now, the git user can only use the SSH connection to push and pull Git repositories and can’t shell
onto the machine. If you try, you’ll see a login rejection like this:

$ ssh git@gitserver

fatal: Interactive git shell is not enabled.

hint: ~/git-shell-commands should exist and have read and execute

access.

Connection to gitserver closed.

100

Now Git network commands will still work just fine but the users won’t be able to get a shell. As the
output states, you can also set up a directory in the git user’s home directory that customizes the
git-shell command a bit. For instance, you can restrict the Git commands that the server will accept
or you can customize the message that users see if they try to SSH in like that. Run git help shell
for more information on customizing the shell.

Git 常駐程式
 Next we’ll set up a daemon serving repositories over the “Git” protocol. This is common choice for
fast, unauthenticated access to your Git data. Remember that since it’s not an authenticated service,
anything you serve over this protocol is public within its network.

If you’re running this on a server outside your firewall, it should only be used for projects that are
publicly visible to the world. If the server you’re running it on is inside your firewall, you might use it
for projects that a large number of people or computers (continuous integration or build servers) have
read-only access to, when you don’t want to have to add an SSH key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run this command in a
daemonized manner:

$ git daemon --reuseaddr --base-path=/opt/git/ /opt/git/

--reuseaddr allows the server to restart without waiting for old connections to time out, the --base
-path option allows people to clone projects without specifying the entire path, and the path at the
end tells the Git daemon where to look for repositories to export. If you’re running a firewall, you’ll
also need to punch a hole in it at port 9418 on the box you’re setting this up on.

You can daemonize this process a number of ways, depending on the operating system you’re
running. On an Ubuntu machine, you can use an Upstart script. So, in the following file

/etc/init/local-git-daemon.conf

you put this script:

start on startup

stop on shutdown

exec /usr/bin/git daemon \

 --user=git --group=git \

 --reuseaddr \

 --base-path=/opt/git/ \

 /opt/git/

respawn

For security reasons, it is strongly encouraged to have this daemon run as a user with read-only
permissions to the repositories – you can easily do this by creating a new user git-ro and running the
daemon as them. For the sake of simplicity we’ll simply run it as the same git user that git-shell is
running as.

101

When you restart your machine, your Git daemon will start automatically and respawn if it goes down.
To get it running without having to reboot, you can run this:

$ initctl start local-git-daemon

On other systems, you may want to use xinetd, a script in your sysvinit system, or something else –
as long as you get that command daemonized and watched somehow.

Next, you have to tell Git which repositories to allow unauthenticated Git server-based access to. You
can do this in each repository by creating a file named git-daemon-export-ok.

$ cd /path/to/project.git

$ touch git-daemon-export-ok

The presence of that file tells Git that it’s OK to serve this project without authentication.

Smart HTTP
 We now have authenticated access though SSH and unauthenticated access through git://, but
there is also a protocol that can do both at the same time. Setting up Smart HTTP is basically just
enabling a CGI script that is provided with Git called git-http-backend on the server. This CGI will
read the path and headers sent by a git fetch or git push to an HTTP URL and determine if the
client can communicate over HTTP (which is true for any client since version 1.6.6). If the CGI sees that
the client is smart, it will communicate smartly with it, otherwise it will fall back to the dumb behavior
(so it is backward compatible for reads with older clients).

Let’s walk through a very basic setup. We’ll set this up with Apache as the CGI server. If you don’t
have Apache setup, you can do so on a Linux box with something like this:

$ sudo apt-get install apache2 apache2-utils

$ a2enmod cgi alias env rewrite

This also enables the mod_cgi, mod_alias, mod_env, and mod_rewrite modules, which are all
needed for this to work properly.

You’ll also need to set the Unix user group of the /opt/git directories to www-data so your web
server can read- and write-access the repositories, because the Apache instance running the CGI script
will (by default) be running as that user:

$ chgrp -R www-data /opt/git

Next we need to add some things to the Apache configuration to run the git-http-backend as the
handler for anything coming into the /git path of your web server.

102

SetEnv GIT_PROJECT_ROOT /opt/git

SetEnv GIT_HTTP_EXPORT_ALL

ScriptAlias /git/ /usr/lib/git-core/git-http-backend/

If you leave out GIT_HTTP_EXPORT_ALL environment variable, then Git will only serve to
unauthenticated clients the repositories with the git-daemon-export-ok file in them, just like the
Git daemon did.

Finally you’ll want to tell Apache to allow requests to git-http-backend and make writes be
authenticated somehow, possibly with an Auth block like this:

RewriteEngine On

RewriteCond %{QUERY_STRING} service=git-receive-pack [OR]

RewriteCond %{REQUEST_URI} /git-receive-pack$

RewriteRule ^/git/ - [E=AUTHREQUIRED]

<Files "git-http-backend">

 AuthType Basic

 AuthName "Git Access"

 AuthUserFile /opt/git/.htpasswd

 Require valid-user

 Order deny,allow

 Deny from env=AUTHREQUIRED

 Satisfy any

</Files>

That will require you to create a .htpasswd file containing the passwords of all the valid users. Here is
an example of adding a “schacon” user to the file:

$ htpasswd -c /opt/git/.htpasswd schacon

There are tons of ways to have Apache authenticate users, you’ll have to choose and implement one
of them. This is just the simplest example we could come up with. You’ll also almost certainly want to
set this up over SSL so all this data is encrypted.

We don’t want to go too far down the rabbit hole of Apache configuration specifics, since you could
well be using a different server or have different authentication needs. The idea is that Git comes with
a CGI called git-http-backend that when invoked will do all the negotiation to send and receive
data over HTTP. It does not implement any authentication itself, but that can easily be controlled at
the layer of the web server that invokes it. You can do this with nearly any CGI-capable web server, so
go with the one that you know best.

筆記 For more information on configuring authentication in Apache, check out the Apache
docs here: http://httpd.apache.org/docs/current/howto/auth.html

103

http://httpd.apache.org/docs/current/howto/auth.html

GitWeb
 Now that you have basic read/write and read-only access to your project, you may want to set up a

simple web-based visualizer. Git comes with a CGI script called GitWeb that is sometimes used for this.

圖表 49. The GitWeb web-based user interface.

If you want to check out what GitWeb would look like for your project, Git comes with a command to
fire up a temporary instance if you have a lightweight server on your system like lighttpd or
webrick. On Linux machines, lighttpd is often installed, so you may be able to get it to run by typing
git instaweb in your project directory. If you’re running a Mac, Leopard comes preinstalled with
Ruby, so webrick may be your best bet. To start instaweb with a non-lighttpd handler, you can run it
with the --httpd option.

$ git instaweb --httpd=webrick

[2009-02-21 10:02:21] INFO WEBrick 1.3.1

[2009-02-21 10:02:21] INFO ruby 1.8.6 (2008-03-03) [universal-

darwin9.0]

That starts up an HTTPD server on port 1234 and then automatically starts a web browser that opens
on that page. It’s pretty easy on your part. When you’re done and want to shut down the server, you
can run the same command with the --stop option:

$ git instaweb --httpd=webrick --stop

104

If you want to run the web interface on a server all the time for your team or for an open source project
you’re hosting, you’ll need to set up the CGI script to be served by your normal web server. Some
Linux distributions have a gitweb package that you may be able to install via apt or yum, so you may
want to try that first. We’ll walk through installing GitWeb manually very quickly. First, you need to
get the Git source code, which GitWeb comes with, and generate the custom CGI script:

$ git clone git://git.kernel.org/pub/scm/git/git.git

$ cd git/

$ make GITWEB_PROJECTROOT="/opt/git" prefix=/usr gitweb

 SUBDIR gitweb

 SUBDIR ../

make[2]: `GIT-VERSION-FILE' is up to date.

 GEN gitweb.cgi

 GEN static/gitweb.js

$ sudo cp -Rf gitweb /var/www/

Notice that you have to tell the command where to find your Git repositories with the
GITWEB_PROJECTROOT variable. Now, you need to make Apache use CGI for that script, for which you
can add a VirtualHost:

<VirtualHost *:80>

 ServerName gitserver

 DocumentRoot /var/www/gitweb

 <Directory /var/www/gitweb>

 Options ExecCGI +FollowSymLinks +SymLinksIfOwnerMatch

 AllowOverride All

 order allow,deny

 Allow from all

 AddHandler cgi-script cgi

 DirectoryIndex gitweb.cgi

 </Directory>

</VirtualHost>

Again, GitWeb can be served with any CGI or Perl capable web server; if you prefer to use something
else, it shouldn’t be difficult to set up. At this point, you should be able to visit http://gitserver/
to view your repositories online.

GitLab
 GitWeb is pretty simplistic though. If you’re looking for a more modern, fully featured Git server,

there are some several open source solutions out there that you can install instead. As GitLab is one of
the more popular ones, we’ll cover installing and using it as an example. This is a bit more complex
than the GitWeb option and likely requires more maintenance, but it is a much more fully featured
option.

安裝
GitLab is a database-backed web application, so its installation is a bit more involved than some other
git servers. Fortunately, this process is very well-documented and supported.

105

There are a few methods you can pursue to install GitLab. To get something up and running quickly,
you can download a virtual machine image or a one-click installer from https://bitnami.com/stack/
gitlab, and tweak the configuration to match your particular environment. One nice touch Bitnami has
included is the login screen (accessed by typing alt-→); it tells you the IP address and default
username and password for the installed GitLab.

圖表 50. The Bitnami GitLab virtual machine login screen.

For anything else, follow the guidance in the GitLab Community Edition readme, which can be found
at https://gitlab.com/gitlab-org/gitlab-ce/tree/master. There you’ll find assistance for installing
GitLab using Chef recipes, a virtual machine on Digital Ocean, and RPM and DEB packages (which, as
of this writing, are in beta). There’s also “unofficial” guidance on getting GitLab running with non-
standard operating systems and databases, a fully-manual installation script, and many other topics.

管理員權限
GitLab’s administration interface is accessed over the web. Simply point your browser to the
hostname or IP address where GitLab is installed, and log in as an admin user. The default username is
admin@local.host, and the default password is 5iveL!fe (which you will be prompted to change as
soon as you enter it). Once logged in, click the “Admin area” icon in the menu at the top right.

圖表 51. The “Admin area” item in the GitLab menu.

106

https://bitnami.com/stack/gitlab
https://bitnami.com/stack/gitlab
https://gitlab.com/gitlab-org/gitlab-ce/tree/master

使用者

Users in GitLab are accounts that correspond to people. User accounts don’t have a lot of complexity;
mainly it’s a collection of personal information attached to login data. Each user account comes with
a namespace, which is a logical grouping of projects that belong to that user. If the user jane had a
project named project, that project’s url would be http://server/jane/project.

圖表 52. The GitLab user administration screen.

Removing a user can be done in two ways. “Blocking” a user prevents them from logging into the
GitLab instance, but all of the data under that user’s namespace will be preserved, and commits
signed with that user’s email address will still link back to their profile.

“Destroying” a user, on the other hand, completely removes them from the database and filesystem.
All projects and data in their namespace is removed, and any groups they own will also be removed.
This is obviously a much more permanent and destructive action, and its uses are rare.

群組

A GitLab group is an assemblage of projects, along with data about how users can access those
projects. Each group has a project namespace (the same way that users do), so if the group training
has a project materials, its url would be http://server/training/materials.

107

http://server/jane/project
http://server/training/materials

圖表 53. The GitLab group administration screen.

Each group is associated with a number of users, each of which has a level of permissions for the
group’s projects and the group itself. These range from “Guest” (issues and chat only) to
“Owner” (full control of the group, its members, and its projects). The types of permissions are too
numerous to list here, but GitLab has a helpful link on the administration screen.

專案

A GitLab project roughly corresponds to a single git repository. Every project belongs to a single
namespace, either a user or a group. If the project belongs to a user, the owner of the project has
direct control over who has access to the project; if the project belongs to a group, the group’s user-
level permissions will also take effect.

Every project also has a visibility level, which controls who has read access to that project’s pages
and repository. If a project is Private, the project’s owner must explicitly grant access to specific
users. An Internal project is visible to any logged-in user, and a Public project is visible to anyone. Note
that this controls both git “fetch” access as well as access to the web UI for that project.

掛句

GitLab includes support for hooks, both at a project or system level. For either of these, the GitLab
server will perform an HTTP POST with some descriptive JSON whenever relevant events occur. This is
a great way to connect your git repositories and GitLab instance to the rest of your development
automation, such as CI servers, chat rooms, or deployment tools.

基本使用
The first thing you’ll want to do with GitLab is create a new project. This is accomplished by clicking
the “+” icon on the toolbar. You’ll be asked for the project’s name, which namespace it should
belong to, and what its visibility level should be. Most of what you specify here isn’t permanent, and
can be re-adjusted later through the settings interface. Click “Create Project”, and you’re done.

Once the project exists, you’ll probably want to connect it with a local Git repository. Each project is

108

accessible over HTTPS or SSH, either of which can be used to configure a Git remote. The URLs are
visible at the top of the project’s home page. For an existing local repository, this command will
create a remote named gitlab to the hosted location:

$ git remote add gitlab https://server/namespace/project.git

If you don’t have a local copy of the repository, you can simply do this:

$ git clone https://server/namespace/project.git

The web UI provides access to several useful views of the repository itself. Each project’s home page
shows recent activity, and links along the top will lead you to views of the project’s files and commit
log.

協同工作
The simplest way of working together on a GitLab project is by giving another user direct push access
to the git repository. You can add a user to a project by going to the “Members” section of that
project’s settings, and associating the new user with an access level (the different access levels are
discussed a bit in 群組). By giving a user an access level of “Developer” or above, that user can push
commits and branches directly to the repository with impunity.

Another, more decoupled way of collaboration is by using merge requests. This feature enables any
user that can see a project to contribute to it in a controlled way. Users with direct access can simply
create a branch, push commits to it, and open a merge request from their branch back into master or
any other branch. Users who don’t have push permissions for a repository can “fork” it (create
their own copy), push commits to that copy, and open a merge request from their fork back to the
main project. This model allows the owner to be in full control of what goes into the repository and
when, while allowing contributions from untrusted users.

Merge requests and issues are the main units of long-lived discussion in GitLab. Each merge request
allows a line-by-line discussion of the proposed change (which supports a lightweight kind of code
review), as well as a general overall discussion thread. Both can be assigned to users, or organized into
milestones.

This section is focused mainly on the Git-related features of GitLab, but as a mature project, it provides
many other features to help your team work together, such as project wikis and system maintenance
tools. One benefit to GitLab is that, once the server is set up and running, you’ll rarely need to tweak
a configuration file or access the server via SSH; most administration and general usage can be
accomplished through the in-browser interface.

第3方 Git 託管方案
If you don’t want to go through all of the work involved in setting up your own Git server, you have
several options for hosting your Git projects on an external dedicated hosting site. Doing so offers a
number of advantages: a hosting site is generally quick to set up and easy to start projects on, and no
server maintenance or monitoring is involved. Even if you set up and run your own server internally,
you may still want to use a public hosting site for your open source code – it’s generally easier for the
open source community to find and help you with.

109

These days, you have a huge number of hosting options to choose from, each with different
advantages and disadvantages. To see an up-to-date list, check out the GitHosting page on the main
Git wiki at https://git.wiki.kernel.org/index.php/GitHosting

We’ll cover using GitHub in detail in GitHub, as it is the largest Git host out there and you may need to
interact with projects hosted on it in any case, but there are dozens more to choose from should you
not want to set up your own Git server.

總結
You have several options to get a remote Git repository up and running so that you can collaborate
with others or share your work.

Running your own server gives you a lot of control and allows you to run the server within your own
firewall, but such a server generally requires a fair amount of your time to set up and maintain. If you
place your data on a hosted server, it’s easy to set up and maintain; however, you have to be able to
keep your code on someone else’s servers, and some organizations don’t allow that.

It should be fairly straightforward to determine which solution or combination of solutions is
appropriate for you and your organization.

110

https://git.wiki.kernel.org/index.php/GitHosting

分散式的 Git
 Now that you have a remote Git repository set up as a point for all the developers to share their code,
and you’re familiar with basic Git commands in a local workflow, you’ll look at how to utilize some
of the distributed workflows that Git affords you.

In this chapter, you’ll see how to work with Git in a distributed environment as a contributor and an
integrator. That is, you’ll learn how to contribute code successfully to a project and make it as easy
on you and the project maintainer as possible, and also how to maintain a project successfully with a
number of developers contributing.

分散式工作流程
 Unlike Centralized Version Control Systems (CVCSs), the distributed nature of Git allows you to be far
more flexible in how developers collaborate on projects. In centralized systems, every developer is a
node working more or less equally on a central hub. In Git, however, every developer is potentially
both a node and a hub – that is, every developer can both contribute code to other repositories and
maintain a public repository on which others can base their work and which they can contribute to.
This opens a vast range of workflow possibilities for your project and/or your team, so we’ll cover a
few common paradigms that take advantage of this flexibility. We’ll go over the strengths and
possible weaknesses of each design; you can choose a single one to use, or you can mix and match
features from each.

集中式工作流程
 In centralized systems, there is generally a single collaboration model–the centralized workflow. One
central hub, or repository, can accept code, and everyone synchronizes their work to it. A number of
developers are nodes – consumers of that hub – and synchronize to that one place.

圖表 54. Centralized workflow.

This means that if two developers clone from the hub and both make changes, the first developer to
push their changes back up can do so with no problems. The second developer must merge in the first
one’s work before pushing changes up, so as not to overwrite the first developer’s changes. This
concept is as true in Git as it is in Subversion (or any CVCS), and this model works perfectly well in Git.

111

If you are already comfortable with a centralized workflow in your company or team, you can easily
continue using that workflow with Git. Simply set up a single repository, and give everyone on your
team push access; Git won’t let users overwrite each other. Say John and Jessica both start working
at the same time. John finishes his change and pushes it to the server. Then Jessica tries to push her
changes, but the server rejects them. She is told that she’s trying to push non-fast-forward changes
and that she won’t be able to do so until she fetches and merges. This workflow is attractive to a lot
of people because it’s a paradigm that many are familiar and comfortable with.

This is also not limited to small teams. With Git’s branching model, it’s possible for hundreds of
developers to successfully work on a single project through dozens of branches simultaneously.

整合式管理員工作流程
 Because Git allows you to have multiple remote repositories, it’s possible to have a workflow where
each developer has write access to their own public repository and read access to everyone else’s.
This scenario often includes a canonical repository that represents the “official” project. To
contribute to that project, you create your own public clone of the project and push your changes to it.
Then, you can send a request to the maintainer of the main project to pull in your changes. The
maintainer can then add your repository as a remote, test your changes locally, merge them into their
branch, and push back to their repository. The process works as follows (see Integration-manager
workflow.):

1. The project maintainer pushes to their public repository.
2. A contributor clones that repository and makes changes.
3. The contributor pushes to their own public copy.
4. The contributor sends the maintainer an email asking them to pull changes.
5. The maintainer adds the contributor’s repo as a remote and merges locally.
6. The maintainer pushes merged changes to the main repository.

圖表 55. Integration-manager workflow.

 This is a very common workflow with hub-based tools like GitHub or GitLab, where it’s easy to fork a
project and push your changes into your fork for everyone to see. One of the main advantages of this
approach is that you can continue to work, and the maintainer of the main repository can pull in your
changes at any time. Contributors don’t have to wait for the project to incorporate their changes –
each party can work at their own pace.

112

司令官與副官工作流程
 This is a variant of a multiple-repository workflow. It’s generally used by huge projects with
hundreds of collaborators; one famous example is the Linux kernel. Various integration managers are
in charge of certain parts of the repository; they’re called lieutenants. All the lieutenants have one
integration manager known as the benevolent dictator. The benevolent dictator’s repository serves
as the reference repository from which all the collaborators need to pull. The process works like this
(see Benevolent dictator workflow.):

1. Regular developers work on their topic branch and rebase their work on top of master. The
master branch is that of the dictator.

2. Lieutenants merge the developers' topic branches into their master branch.

3. The dictator merges the lieutenants' master branches into the dictator’s master branch.

4. The dictator pushes their master to the reference repository so the other developers can rebase
on it.

圖表 56. Benevolent dictator workflow.

This kind of workflow isn’t common, but can be useful in very big projects, or in highly hierarchical
environments. It allows the project leader (the dictator) to delegate much of the work and collect large
subsets of code at multiple points before integrating them.

工作流程總結
These are some commonly used workflows that are possible with a distributed system like Git, but you
can see that many variations are possible to suit your particular real-world workflow. Now that you
can (hopefully) determine which workflow combination may work for you, we’ll cover some more
specific examples of how to accomplish the main roles that make up the different flows. In the next
section, you’ll learn about a few common patterns for contributing to a project.

113

對專案進行貢獻
 The main difficulty with describing how to contribute to a project is that there are a huge number of
variations on how it’s done. Because Git is very flexible, people can and do work together in many
ways, and it’s problematic to describe how you should contribute – every project is a bit different.
Some of the variables involved are active contributor count, chosen workflow, your commit access,
and possibly the external contribution method.

The first variable is active contributor count – how many users are actively contributing code to this
project, and how often? In many instances, you’ll have two or three developers with a few commits a
day, or possibly less for somewhat dormant projects. For larger companies or projects, the number of
developers could be in the thousands, with hundreds or thousands of commits coming in each day.
This is important because with more and more developers, you run into more issues with making sure
your code applies cleanly or can be easily merged. Changes you submit may be rendered obsolete or
severely broken by work that is merged in while you were working or while your changes were waiting
to be approved or applied. How can you keep your code consistently up to date and your commits
valid?

The next variable is the workflow in use for the project. Is it centralized, with each developer having
equal write access to the main codeline? Does the project have a maintainer or integration manager
who checks all the patches? Are all the patches peer-reviewed and approved? Are you involved in that
process? Is a lieutenant system in place, and do you have to submit your work to them first?

The next issue is your commit access. The workflow required in order to contribute to a project is
much different if you have write access to the project than if you don’t. If you don’t have write
access, how does the project prefer to accept contributed work? Does it even have a policy? How much
work are you contributing at a time? How often do you contribute?

All these questions can affect how you contribute effectively to a project and what workflows are
preferred or available to you. We’ll cover aspects of each of these in a series of use cases, moving
from simple to more complex; you should be able to construct the specific workflows you need in
practice from these examples.

提交指南
Before we start looking at the specific use cases, here’s a quick note about commit messages. Having
a good guideline for creating commits and sticking to it makes working with Git and collaborating with
others a lot easier. The Git project provides a document that lays out a number of good tips for
creating commits from which to submit patches – you can read it in the Git source code in the
Documentation/SubmittingPatches file.

 First, you don’t want to submit any whitespace errors. Git provides an easy way to check for this –
before you commit, run git diff --check, which identifies possible whitespace errors and lists
them for you.

114

圖表 57. Output of git diff --check.

If you run that command before committing, you can tell if you’re about to commit whitespace issues
that may annoy other developers.

Next, try to make each commit a logically separate changeset. If you can, try to make your changes
digestible – don’t code for a whole weekend on five different issues and then submit them all as one
massive commit on Monday. Even if you don’t commit during the weekend, use the staging area on
Monday to split your work into at least one commit per issue, with a useful message per commit. If
some of the changes modify the same file, try to use git add --patch to partially stage files
(covered in detail in Interactive Staging). The project snapshot at the tip of the branch is identical
whether you do one commit or five, as long as all the changes are added at some point, so try to make
things easier on your fellow developers when they have to review your changes. This approach also
makes it easier to pull out or revert one of the changesets if you need to later. Rewriting History
describes a number of useful Git tricks for rewriting history and interactively staging files – use these
tools to help craft a clean and understandable history before sending the work to someone else.

The last thing to keep in mind is the commit message. Getting in the habit of creating quality commit
messages makes using and collaborating with Git a lot easier. As a general rule, your messages should
start with a single line that’s no more than about 50 characters and that describes the changeset
concisely, followed by a blank line, followed by a more detailed explanation. The Git project requires
that the more detailed explanation include your motivation for the change and contrast its
implementation with previous behavior – this is a good guideline to follow. It’s also a good idea to
use the imperative present tense in these messages. In other words, use commands. Instead of “I
added tests for” or “Adding tests for,” use “Add tests for.” Here is a template originally written by
Tim Pope:

115

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to

about 72 characters or so. In some contexts, the first

line is treated as the subject of an email and the rest of

the text as the body. The blank line separating the

summary from the body is critical (unless you omit the body

entirely); tools like rebase can get confused if you run

the two together.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for the bullet,

 preceded by a single space, with blank lines in

 between, but conventions vary here

If all your commit messages look like this, things will be a lot easier for you and the developers you
work with. The Git project has well-formatted commit messages – try running git log --no-merges
there to see what a nicely formatted project-commit history looks like.

In the following examples, and throughout most of this book, for the sake of brevity this book
doesn’t have nicely-formatted messages like this; instead, we use the -m option to git commit. Do
as we say, not as we do.

私有的小團隊
 The simplest setup you’re likely to encounter is a private project with one or two other developers.
“Private,” in this context, means closed-source – not accessible to the outside world. You and the
other developers all have push access to the repository.

In this environment, you can follow a workflow similar to what you might do when using Subversion or
another centralized system. You still get the advantages of things like offline committing and vastly
simpler branching and merging, but the workflow can be very similar; the main difference is that
merges happen client-side rather than on the server at commit time. Let’s see what it might look like
when two developers start to work together with a shared repository. The first developer, John, clones
the repository, makes a change, and commits locally. (The protocol messages have been replaced with
... in these examples to shorten them somewhat.)

John's Machine

$ git clone john@githost:simplegit.git

Cloning into 'simplegit'...

...

$ cd simplegit/

$ vim lib/simplegit.rb

$ git commit -am 'removed invalid default value'

[master 738ee87] removed invalid default value

 1 files changed, 1 insertions(+), 1 deletions(-)

116

The second developer, Jessica, does the same thing – clones the repository and commits a change:

Jessica's Machine

$ git clone jessica@githost:simplegit.git

Cloning into 'simplegit'...

...

$ cd simplegit/

$ vim TODO

$ git commit -am 'add reset task'

[master fbff5bc] add reset task

 1 files changed, 1 insertions(+), 0 deletions(-)

Now, Jessica pushes her work up to the server:

Jessica's Machine

$ git push origin master

...

To jessica@githost:simplegit.git

 1edee6b..fbff5bc master -> master

John tries to push his change up, too:

John's Machine

$ git push origin master

To john@githost:simplegit.git

 ! [rejected] master -> master (non-fast forward)

error: failed to push some refs to 'john@githost:simplegit.git'

John isn’t allowed to push because Jessica has pushed in the meantime. This is especially important
to understand if you’re used to Subversion, because you’ll notice that the two developers didn’t
edit the same file. Although Subversion automatically does such a merge on the server if different files
are edited, in Git you must merge the commits locally. John has to fetch Jessica’s changes and merge
them in before he will be allowed to push:

$ git fetch origin

...

From john@githost:simplegit

 + 049d078...fbff5bc master -> origin/master

At this point, John’s local repository looks something like this:

117

圖表 58. John’s divergent history.

John has a reference to the changes Jessica pushed up, but he has to merge them into his own work
before he is allowed to push:

$ git merge origin/master

Merge made by recursive.

 TODO | 1 +

 1 files changed, 1 insertions(+), 0 deletions(-)

The merge goes smoothly – John’s commit history now looks like this:

圖表 59. John’s repository after merging origin/master.

118

Now, John can test his code to make sure it still works properly, and then he can push his new merged
work up to the server:

$ git push origin master

...

To john@githost:simplegit.git

 fbff5bc..72bbc59 master -> master

Finally, John’s commit history looks like this:

圖表 60. John’s history after pushing to the origin server.

In the meantime, Jessica has been working on a topic branch. She’s created a topic branch called
issue54 and done three commits on that branch. She hasn’t fetched John’s changes yet, so her
commit history looks like this:

圖表 61. Jessica’s topic branch.

Jessica wants to sync up with John, so she fetches:

Jessica's Machine

$ git fetch origin

...

From jessica@githost:simplegit

 fbff5bc..72bbc59 master -> origin/master

That pulls down the work John has pushed up in the meantime. Jessica’s history now looks like this:

119

圖表 62. Jessica’s history after fetching John’s changes.

Jessica thinks her topic branch is ready, but she wants to know what she has to merge into her work so
that she can push. She runs git log to find out:

$ git log --no-merges issue54..origin/master

commit 738ee872852dfaa9d6634e0dea7a324040193016

Author: John Smith <jsmith@example.com>

Date: Fri May 29 16:01:27 2009 -0700

 removed invalid default value

The issue54..origin/master syntax is a log filter that asks Git to only show the list of commits that
are on the latter branch (in this case origin/master) that are not on the first branch (in this case
issue54). We’ll go over this syntax in detail in Commit Ranges.

For now, we can see from the output that there is a single commit that John has made that Jessica has
not merged in. If she merges origin/master, that is the single commit that will modify her local
work.

Now, Jessica can merge her topic work into her master branch, merge John’s work (
origin/master) into her master branch, and then push back to the server again. First, she switches
back to her master branch to integrate all this work:

$ git checkout master

Switched to branch 'master'

Your branch is behind 'origin/master' by 2 commits, and can be fast-

forwarded.

She can merge either origin/master or issue54 first – they’re both upstream, so the order
doesn’t matter. The end snapshot should be identical no matter which order she chooses; only the
history will be slightly different. She chooses to merge in issue54 first:

120

$ git merge issue54

Updating fbff5bc..4af4298

Fast forward

 README | 1 +

 lib/simplegit.rb | 6 +++++-

 2 files changed, 6 insertions(+), 1 deletions(-)

No problems occur; as you can see it was a simple fast-forward. Now Jessica merges in John’s work
(origin/master):

$ git merge origin/master

Auto-merging lib/simplegit.rb

Merge made by recursive.

 lib/simplegit.rb | 2 +-

 1 files changed, 1 insertions(+), 1 deletions(-)

Everything merges cleanly, and Jessica’s history looks like this:

圖表 63. Jessica’s history after merging John’s changes.

Now origin/master is reachable from Jessica’s master branch, so she should be able to
successfully push (assuming John hasn’t pushed again in the meantime):

$ git push origin master

...

To jessica@githost:simplegit.git

 72bbc59..8059c15 master -> master

Each developer has committed a few times and merged each other’s work successfully.

121

圖表 64. Jessica’s history after pushing all changes back to the server.

That is one of the simplest workflows. You work for a while, generally in a topic branch, and merge into
your master branch when it’s ready to be integrated. When you want to share that work, you fetch
and merge your master from origin/master if it has changed, and finally push to the master branch
on the server. The general sequence is something like this:

122

圖表 65. General sequence of events for a simple multiple-developer Git workflow.

私有團隊
 In this next scenario, you’ll look at contributor roles in a larger private group. You’ll learn how to
work in an environment where small groups collaborate on features and then those team-based
contributions are integrated by another party.

Let’s say that John and Jessica are working together on one feature, while Jessica and Josie are
working on a second. In this case, the company is using a type of integration-manager workflow where

123

the work of the individual groups is integrated only by certain engineers, and the master branch of
the main repo can be updated only by those engineers. In this scenario, all work is done in team-based
branches and pulled together by the integrators later.

Let’s follow Jessica’s workflow as she works on her two features, collaborating in parallel with two
different developers in this environment. Assuming she already has her repository cloned, she decides
to work on featureA first. She creates a new branch for the feature and does some work on it there:

Jessica's Machine

$ git checkout -b featureA

Switched to a new branch 'featureA'

$ vim lib/simplegit.rb

$ git commit -am 'add limit to log function'

[featureA 3300904] add limit to log function

 1 files changed, 1 insertions(+), 1 deletions(-)

At this point, she needs to share her work with John, so she pushes her featureA branch commits up
to the server. Jessica doesn’t have push access to the master branch – only the integrators do – so
she has to push to another branch in order to collaborate with John:

$ git push -u origin featureA

...

To jessica@githost:simplegit.git

 * [new branch] featureA -> featureA

Jessica emails John to tell him that she’s pushed some work into a branch named featureA and he
can look at it now. While she waits for feedback from John, Jessica decides to start working on
featureB with Josie. To begin, she starts a new feature branch, basing it off the server’s master
branch:

Jessica's Machine

$ git fetch origin

$ git checkout -b featureB origin/master

Switched to a new branch 'featureB'

Now, Jessica makes a couple of commits on the featureB branch:

$ vim lib/simplegit.rb

$ git commit -am 'made the ls-tree function recursive'

[featureB e5b0fdc] made the ls-tree function recursive

 1 files changed, 1 insertions(+), 1 deletions(-)

$ vim lib/simplegit.rb

$ git commit -am 'add ls-files'

[featureB 8512791] add ls-files

 1 files changed, 5 insertions(+), 0 deletions(-)

Jessica’s repository looks like this:

124

圖表 66. Jessica’s initial commit history.

She’s ready to push up her work, but gets an email from Josie that a branch with some initial work
on it was already pushed to the server as featureBee. Jessica first needs to merge those changes in
with her own before she can push to the server. She can then fetch Josie’s changes down with git
fetch:

$ git fetch origin

...

From jessica@githost:simplegit

 * [new branch] featureBee -> origin/featureBee

Jessica can now merge this into the work she did with git merge:

$ git merge origin/featureBee

Auto-merging lib/simplegit.rb

Merge made by recursive.

 lib/simplegit.rb | 4 ++++

 1 files changed, 4 insertions(+), 0 deletions(-)

There is a bit of a problem – she needs to push the merged work in her featureB branch to the
featureBee branch on the server. She can do so by specifying the local branch followed by a colon (:)
followed by the remote branch to the git push command:

$ git push -u origin featureB:featureBee

...

To jessica@githost:simplegit.git

 fba9af8..cd685d1 featureB -> featureBee

This is called a refspec. See The Refspec for a more detailed discussion of Git refspecs and different
things you can do with them. Also notice the -u flag; this is short for --set-upstream, which
configures the branches for easier pushing and pulling later.

125

Next, John emails Jessica to say he’s pushed some changes to the featureA branch and asks her to
verify them. She runs a git fetch to pull down those changes:

$ git fetch origin

...

From jessica@githost:simplegit

 3300904..aad881d featureA -> origin/featureA

Then, she can see what has been changed with git log:

$ git log featureA..origin/featureA

commit aad881d154acdaeb2b6b18ea0e827ed8a6d671e6

Author: John Smith <jsmith@example.com>

Date: Fri May 29 19:57:33 2009 -0700

 changed log output to 30 from 25

Finally, she merges John’s work into her own featureA branch:

$ git checkout featureA

Switched to branch 'featureA'

$ git merge origin/featureA

Updating 3300904..aad881d

Fast forward

 lib/simplegit.rb | 10 +++++++++-

1 files changed, 9 insertions(+), 1 deletions(-)

Jessica wants to tweak something, so she commits again and then pushes this back up to the server:

$ git commit -am 'small tweak'

[featureA 774b3ed] small tweak

 1 files changed, 1 insertions(+), 1 deletions(-)

$ git push

...

To jessica@githost:simplegit.git

 3300904..774b3ed featureA -> featureA

Jessica’s commit history now looks something like this:

126

圖表 67. Jessica’s history after committing on a feature branch.

Jessica, Josie, and John inform the integrators that the featureA and featureBee branches on the
server are ready for integration into the mainline. After the integrators merge these branches into the
mainline, a fetch will bring down the new merge commit, making the history look like this:

圖表 68. Jessica’s history after merging both her topic branches.

Many groups switch to Git because of this ability to have multiple teams working in parallel, merging
the different lines of work late in the process. The ability of smaller subgroups of a team to collaborate
via remote branches without necessarily having to involve or impede the entire team is a huge benefit
of Git. The sequence for the workflow you saw here is something like this:

127

圖表 69. Basic sequence of this managed-team workflow.

Fork 公眾專案
 Contributing to public projects is a bit different. Because you don’t have the permissions to directly
update branches on the project, you have to get the work to the maintainers some other way. This first
example describes contributing via forking on Git hosts that support easy forking. Many hosting sites
support this (including GitHub, BitBucket, Google Code, repo.or.cz, and others), and many project
maintainers expect this style of contribution. The next section deals with projects that prefer to accept
contributed patches via email.

First, you’ll probably want to clone the main repository, create a topic branch for the patch or patch
series you’re planning to contribute, and do your work there. The sequence looks basically like this:

128

$ git clone (url)

$ cd project

$ git checkout -b featureA

(work)

$ git commit

(work)

$ git commit

筆記
You may want to use rebase -i to squash your work down to a single commit, or
rearrange the work in the commits to make the patch easier for the maintainer to review
– see Rewriting History for more information about interactive rebasing.

When your branch work is finished and you’re ready to contribute it back to the maintainers, go to
the original project page and click the “Fork” button, creating your own writable fork of the project.
You then need to add in this new repository URL as a second remote, in this case named myfork:

$ git remote add myfork (url)

Then you need to push your work up to it. It’s easiest to push the topic branch you’re working on up
to your repository, rather than merging into your master branch and pushing that up. The reason is
that if the work isn’t accepted or is cherry picked, you don’t have to rewind your master branch. If
the maintainers merge, rebase, or cherry-pick your work, you’ll eventually get it back via pulling
from their repository anyhow:

$ git push -u myfork featureA

 When your work has been pushed up to your fork, you need to notify the maintainer. This is often
called a pull request, and you can either generate it via the website – GitHub has its own Pull Request
mechanism that we’ll go over in GitHub – or you can run the git request-pull command and
email the output to the project maintainer manually.

The request-pull command takes the base branch into which you want your topic branch pulled
and the Git repository URL you want them to pull from, and outputs a summary of all the changes
you’re asking to be pulled in. For instance, if Jessica wants to send John a pull request, and she’s
done two commits on the topic branch she just pushed up, she can run this:

129

$ git request-pull origin/master myfork

The following changes since commit

1edee6b1d61823a2de3b09c160d7080b8d1b3a40:

 John Smith (1):

 added a new function

are available in the git repository at:

 git://githost/simplegit.git featureA

Jessica Smith (2):

 add limit to log function

 change log output to 30 from 25

 lib/simplegit.rb | 10 +++++++++-

 1 files changed, 9 insertions(+), 1 deletions(-)

The output can be sent to the maintainer – it tells them where the work was branched from,
summarizes the commits, and tells where to pull this work from.

On a project for which you’re not the maintainer, it’s generally easier to have a branch like master
always track origin/master and to do your work in topic branches that you can easily discard if
they’re rejected. Having work themes isolated into topic branches also makes it easier for you to
rebase your work if the tip of the main repository has moved in the meantime and your commits no
longer apply cleanly. For example, if you want to submit a second topic of work to the project, don’t
continue working on the topic branch you just pushed up – start over from the main repository’s
master branch:

$ git checkout -b featureB origin/master

(work)

$ git commit

$ git push myfork featureB

(email maintainer)

$ git fetch origin

Now, each of your topics is contained within a silo – similar to a patch queue – that you can rewrite,
rebase, and modify without the topics interfering or interdepending on each other, like so:

130

圖表 70. Initial commit history with featureB work.

Let’s say the project maintainer has pulled in a bunch of other patches and tried your first branch,
but it no longer cleanly merges. In this case, you can try to rebase that branch on top of
origin/master, resolve the conflicts for the maintainer, and then resubmit your changes:

$ git checkout featureA

$ git rebase origin/master

$ git push -f myfork featureA

This rewrites your history to now look like Commit history after featureA work..

圖表 71. Commit history after featureA work.

Because you rebased the branch, you have to specify the -f to your push command in order to be able
to replace the featureA branch on the server with a commit that isn’t a descendant of it. An
alternative would be to push this new work to a different branch on the server (perhaps called
featureAv2).

Let’s look at one more possible scenario: the maintainer has looked at work in your second branch
and likes the concept but would like you to change an implementation detail. You’ll also take this
opportunity to move the work to be based off the project’s current master branch. You start a new
branch based off the current origin/master branch, squash the featureB changes there, resolve
any conflicts, make the implementation change, and then push that up as a new branch:

131

$ git checkout -b featureBv2 origin/master

$ git merge --squash featureB

(change implementation)

$ git commit

$ git push myfork featureBv2

The --squash option takes all the work on the merged branch and squashes it into one changeset
producing the repository state as if a real merge happened, without actually making a merge commit.
This means your future commit will have one parent only and allows you to introduce all the changes
from another branch and then make more changes before recording the new commit. Also the --no
-commit option can be useful to delay the merge commit in case of the default merge process.

Now you can send the maintainer a message that you’ve made the requested changes and they can
find those changes in your featureBv2 branch.

圖表 72. Commit history after featureBv2 work.

透過電子郵件貢獻到公眾專案
 Many projects have established procedures for accepting patches – you’ll need to check the specific
rules for each project, because they will differ. Since there are several older, larger projects which
accept patches via a developer mailing list, we’ll go over an example of that now.

The workflow is similar to the previous use case – you create topic branches for each patch series you
work on. The difference is how you submit them to the project. Instead of forking the project and
pushing to your own writable version, you generate email versions of each commit series and email
them to the developer mailing list:

$ git checkout -b topicA

(work)

$ git commit

(work)

$ git commit

 Now you have two commits that you want to send to the mailing list. You use git format-patch to
generate the mbox-formatted files that you can email to the list – it turns each commit into an email
message with the first line of the commit message as the subject and the rest of the message plus the
patch that the commit introduces as the body. The nice thing about this is that applying a patch from

132

an email generated with format-patch preserves all the commit information properly.

$ git format-patch -M origin/master

0001-add-limit-to-log-function.patch

0002-changed-log-output-to-30-from-25.patch

The format-patch command prints out the names of the patch files it creates. The -M switch tells Git
to look for renames. The files end up looking like this:

$ cat 0001-add-limit-to-log-function.patch

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

 lib/simplegit.rb | 2 +-

 1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index 76f47bc..f9815f1 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -14,7 +14,7 @@ class SimpleGit

 end

 def log(treeish = 'master')

- command("git log #{treeish}")

+ command("git log -n 20 #{treeish}")

 end

 def ls_tree(treeish = 'master')

--

2.1.0

You can also edit these patch files to add more information for the email list that you don’t want to
show up in the commit message. If you add text between the --- line and the beginning of the patch
(the diff --git line), then developers can read it; but applying the patch excludes it.

To email this to a mailing list, you can either paste the file into your email program or send it via a
command-line program. Pasting the text often causes formatting issues, especially with “smarter”
clients that don’t preserve newlines and other whitespace appropriately. Luckily, Git provides a tool
to help you send properly formatted patches via IMAP, which may be easier for you. We’ll
demonstrate how to send a patch via Gmail, which happens to be the email agent we know best; you
can read detailed instructions for a number of mail programs at the end of the aforementioned
Documentation/SubmittingPatches file in the Git source code.

 First, you need to set up the imap section in your ~/.gitconfig file. You can set each value

133

separately with a series of git config commands, or you can add them manually, but in the end
your config file should look something like this:

[imap]

 folder = "[Gmail]/Drafts"

 host = imaps://imap.gmail.com

 user = user@gmail.com

 pass = p4ssw0rd

 port = 993

 sslverify = false

If your IMAP server doesn’t use SSL, the last two lines probably aren’t necessary, and the host value
will be imap:// instead of imaps://. When that is set up, you can use git imap-send to place the
patch series in the Drafts folder of the specified IMAP server:

$ cat *.patch |git imap-send

Resolving imap.gmail.com... ok

Connecting to [74.125.142.109]:993... ok

Logging in...

sending 2 messages

100% (2/2) done

At this point, you should be able to go to your Drafts folder, change the To field to the mailing list
you’re sending the patch to, possibly CC the maintainer or person responsible for that section, and
send it off.

You can also send the patches through an SMTP server. As before, you can set each value separately
with a series of git config commands, or you can add them manually in the sendemail section in
your ~/.gitconfig file:

[sendemail]

 smtpencryption = tls

 smtpserver = smtp.gmail.com

 smtpuser = user@gmail.com

 smtpserverport = 587

After this is done, you can use git send-email to send your patches:

$ git send-email *.patch

0001-added-limit-to-log-function.patch

0002-changed-log-output-to-30-from-25.patch

Who should the emails appear to be from? [Jessica Smith

<jessica@example.com>]

Emails will be sent from: Jessica Smith <jessica@example.com>

Who should the emails be sent to? jessica@example.com

Message-ID to be used as In-Reply-To for the first email? y

134

Then, Git spits out a bunch of log information looking something like this for each patch you’re
sending:

(mbox) Adding cc: Jessica Smith <jessica@example.com> from

 \line 'From: Jessica Smith <jessica@example.com>'

OK. Log says:

Sendmail: /usr/sbin/sendmail -i jessica@example.com

From: Jessica Smith <jessica@example.com>

To: jessica@example.com

Subject: [PATCH 1/2] added limit to log function

Date: Sat, 30 May 2009 13:29:15 -0700

Message-Id: <1243715356-61726-1-git-send-email-jessica@example.com>

X-Mailer: git-send-email 1.6.2.rc1.20.g8c5b.dirty

In-Reply-To: <y>

References: <y>

Result: OK

總結
This section has covered a number of common workflows for dealing with several very different types
of Git projects you’re likely to encounter, and introduced a couple of new tools to help you manage
this process. Next, you’ll see how to work the other side of the coin: maintaining a Git project. You’ll
learn how to be a benevolent dictator or integration manager.

維護一個專案
 In addition to knowing how to effectively contribute to a project, you’ll likely need to know how to
maintain one. This can consist of accepting and applying patches generated via format-patch and
emailed to you, or integrating changes in remote branches for repositories you’ve added as remotes
to your project. Whether you maintain a canonical repository or want to help by verifying or approving
patches, you need to know how to accept work in a way that is clearest for other contributors and
sustainable by you over the long run.

使用有特定主題的分支工作
 When you’re thinking of integrating new work, it’s generally a good idea to try it out in a topic
branch – a temporary branch specifically made to try out that new work. This way, it’s easy to tweak
a patch individually and leave it if it’s not working until you have time to come back to it. If you
create a simple branch name based on the theme of the work you’re going to try, such as
ruby_client or something similarly descriptive, you can easily remember it if you have to abandon it
for a while and come back later. The maintainer of the Git project tends to namespace these branches
as well – such as sc/ruby_client, where sc is short for the person who contributed the work. As
you’ll remember, you can create the branch based off your master branch like this:

$ git branch sc/ruby_client master

Or, if you want to also switch to it immediately, you can use the checkout -b option:

135

$ git checkout -b sc/ruby_client master

Now you’re ready to add your contributed work into this topic branch and determine if you want to
merge it into your longer-term branches.

套用從電子郵件來的補丁
 If you receive a patch over email that you need to integrate into your project, you need to apply the
patch in your topic branch to evaluate it. There are two ways to apply an emailed patch: with git
apply or with git am.

使用 apply 命令套用補丁

 If you received the patch from someone who generated it with the git diff or a Unix diff
command (which is not recommended; see the next section), you can apply it with the git apply
command. Assuming you saved the patch at /tmp/patch-ruby-client.patch, you can apply the
patch like this:

$ git apply /tmp/patch-ruby-client.patch

This modifies the files in your working directory. It’s almost identical to running a patch -p1
command to apply the patch, although it’s more paranoid and accepts fewer fuzzy matches than
patch. It also handles file adds, deletes, and renames if they’re described in the git diff format,
which patch won’t do. Finally, git apply is an “apply all or abort all” model where either
everything is applied or nothing is, whereas patch can partially apply patchfiles, leaving your working
directory in a weird state. git apply is overall much more conservative than patch. It won’t create
a commit for you – after running it, you must stage and commit the changes introduced manually.

You can also use git apply to see if a patch applies cleanly before you try actually applying it – you can
run git apply --check with the patch:

$ git apply --check 0001-seeing-if-this-helps-the-gem.patch

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

If there is no output, then the patch should apply cleanly. This command also exits with a non-zero
status if the check fails, so you can use it in scripts if you want.

使用 am 命令套用補丁

 If the contributor is a Git user and was good enough to use the format-patch command to generate
their patch, then your job is easier because the patch contains author information and a commit
message for you. If you can, encourage your contributors to use format-patch instead of diff to
generate patches for you. You should only have to use git apply for legacy patches and things like
that.

To apply a patch generated by format-patch, you use git am. Technically, git am is built to read an
mbox file, which is a simple, plain-text format for storing one or more email messages in one text file. It

136

looks something like this:

From 330090432754092d704da8e76ca5c05c198e71a8 Mon Sep 17 00:00:00 2001

From: Jessica Smith <jessica@example.com>

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limit to log function

Limit log functionality to the first 20

This is the beginning of the output of the format-patch command that you saw in the previous section.
This is also a valid mbox email format. If someone has emailed you the patch properly using git send-
email, and you download that into an mbox format, then you can point git am to that mbox file, and it
will start applying all the patches it sees. If you run a mail client that can save several emails out in
mbox format, you can save entire patch series into a file and then use git am to apply them one at a
time.

However, if someone uploaded a patch file generated via format-patch to a ticketing system or
something similar, you can save the file locally and then pass that file saved on your disk to git am to
apply it:

$ git am 0001-limit-log-function.patch

Applying: add limit to log function

You can see that it applied cleanly and automatically created the new commit for you. The author
information is taken from the email’s From and Date headers, and the message of the commit is
taken from the Subject and body (before the patch) of the email. For example, if this patch was
applied from the mbox example above, the commit generated would look something like this:

$ git log --pretty=fuller -1

commit 6c5e70b984a60b3cecd395edd5b48a7575bf58e0

Author: Jessica Smith <jessica@example.com>

AuthorDate: Sun Apr 6 10:17:23 2008 -0700

Commit: Scott Chacon <schacon@gmail.com>

CommitDate: Thu Apr 9 09:19:06 2009 -0700

 add limit to log function

 Limit log functionality to the first 20

The Commit information indicates the person who applied the patch and the time it was applied. The
Author information is the individual who originally created the patch and when it was originally
created.

But it’s possible that the patch won’t apply cleanly. Perhaps your main branch has diverged too far
from the branch the patch was built from, or the patch depends on another patch you haven’t
applied yet. In that case, the git am process will fail and ask you what you want to do:

137

$ git am 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Patch failed at 0001.

When you have resolved this problem run "git am --resolved".

If you would prefer to skip this patch, instead run "git am --skip".

To restore the original branch and stop patching run "git am --abort".

This command puts conflict markers in any files it has issues with, much like a conflicted merge or
rebase operation. You solve this issue much the same way – edit the file to resolve the conflict, stage
the new file, and then run git am --resolved to continue to the next patch:

$ (fix the file)

$ git add ticgit.gemspec

$ git am --resolved

Applying: seeing if this helps the gem

If you want Git to try a bit more intelligently to resolve the conflict, you can pass a -3 option to it,
which makes Git attempt a three-way merge. This option isn’t on by default because it doesn’t
work if the commit the patch says it was based on isn’t in your repository. If you do have that commit
– if the patch was based on a public commit – then the -3 option is generally much smarter about
applying a conflicting patch:

$ git am -3 0001-seeing-if-this-helps-the-gem.patch

Applying: seeing if this helps the gem

error: patch failed: ticgit.gemspec:1

error: ticgit.gemspec: patch does not apply

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

No changes -- Patch already applied.

In this case, this patch had already been applied. Without the -3 option, it looks like a conflict.

If you’re applying a number of patches from an mbox, you can also run the am command in
interactive mode, which stops at each patch it finds and asks if you want to apply it:

$ git am -3 -i mbox

Commit Body is:

seeing if this helps the gem

Apply? [y]es/[n]o/[e]dit/[v]iew patch/[a]ccept all

This is nice if you have a number of patches saved, because you can view the patch first if you don’t
remember what it is, or not apply the patch if you’ve already done so.

138

When all the patches for your topic are applied and committed into your branch, you can choose
whether and how to integrate them into a longer-running branch.

切換到遠端分支
 If your contribution came from a Git user who set up their own repository, pushed a number of
changes into it, and then sent you the URL to the repository and the name of the remote branch the
changes are in, you can add them as a remote and do merges locally.

For instance, if Jessica sends you an email saying that she has a great new feature in the ruby-client
branch of her repository, you can test it by adding the remote and checking out that branch locally:

$ git remote add jessica git://github.com/jessica/myproject.git

$ git fetch jessica

$ git checkout -b rubyclient jessica/ruby-client

If she emails you again later with another branch containing another great feature, you can fetch and
check out because you already have the remote setup.

This is most useful if you’re working with a person consistently. If someone only has a single patch to
contribute once in a while, then accepting it over email may be less time consuming than requiring
everyone to run their own server and having to continually add and remove remotes to get a few
patches. You’re also unlikely to want to have hundreds of remotes, each for someone who
contributes only a patch or two. However, scripts and hosted services may make this easier – it
depends largely on how you develop and how your contributors develop.

The other advantage of this approach is that you get the history of the commits as well. Although you
may have legitimate merge issues, you know where in your history their work is based; a proper three-
way merge is the default rather than having to supply a -3 and hope the patch was generated off a
public commit to which you have access.

If you aren’t working with a person consistently but still want to pull from them in this way, you can
provide the URL of the remote repository to the git pull command. This does a one-time pull and
doesn’t save the URL as a remote reference:

$ git pull https://github.com/onetimeguy/project

From https://github.com/onetimeguy/project

 * branch HEAD -> FETCH_HEAD

Merge made by recursive.

決定要提到哪些資訊
 Now you have a topic branch that contains contributed work. At this point, you can determine what
you’d like to do with it. This section revisits a couple of commands so you can see how you can use
them to review exactly what you’ll be introducing if you merge this into your main branch.

It’s often helpful to get a review of all the commits that are in this branch but that aren’t in your
master branch. You can exclude commits in the master branch by adding the --not option before the
branch name. This does the same thing as the master..contrib format that we used earlier. For

139

example, if your contributor sends you two patches and you create a branch called contrib and
applied those patches there, you can run this:

$ git log contrib --not master

commit 5b6235bd297351589efc4d73316f0a68d484f118

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Oct 24 09:53:59 2008 -0700

 seeing if this helps the gem

commit 7482e0d16d04bea79d0dba8988cc78df655f16a0

Author: Scott Chacon <schacon@gmail.com>

Date: Mon Oct 22 19:38:36 2008 -0700

 updated the gemspec to hopefully work better

To see what changes each commit introduces, remember that you can pass the -p option to git log
and it will append the diff introduced to each commit.

To see a full diff of what would happen if you were to merge this topic branch with another branch, you
may have to use a weird trick to get the correct results. You may think to run this:

$ git diff master

This command gives you a diff, but it may be misleading. If your master branch has moved forward
since you created the topic branch from it, then you’ll get seemingly strange results. This happens
because Git directly compares the snapshots of the last commit of the topic branch you’re on and the
snapshot of the last commit on the master branch. For example, if you’ve added a line in a file on
the master branch, a direct comparison of the snapshots will look like the topic branch is going to
remove that line.

If master is a direct ancestor of your topic branch, this isn’t a problem; but if the two histories have
diverged, the diff will look like you’re adding all the new stuff in your topic branch and removing
everything unique to the master branch.

What you really want to see are the changes added to the topic branch – the work you’ll introduce if
you merge this branch with master. You do that by having Git compare the last commit on your topic
branch with the first common ancestor it has with the master branch.

Technically, you can do that by explicitly figuring out the common ancestor and then running your diff
on it:

$ git merge-base contrib master

36c7dba2c95e6bbb78dfa822519ecfec6e1ca649

$ git diff 36c7db

However, that isn’t convenient, so Git provides another shorthand for doing the same thing: the
triple-dot syntax. In the context of the diff command, you can put three periods after another branch

140

to do a diff between the last commit of the branch you’re on and its common ancestor with another
branch:

$ git diff master...contrib

This command shows you only the work your current topic branch has introduced since its common
ancestor with master. That is a very useful syntax to remember.

整合貢獻工作
 When all the work in your topic branch is ready to be integrated into a more mainline branch, the
question is how to do it. Furthermore, what overall workflow do you want to use to maintain your
project? You have a number of choices, so we’ll cover a few of them.

合併工作流程

 One simple workflow merges your work into your master branch. In this scenario, you have a master
branch that contains basically stable code. When you have work in a topic branch that you’ve done
or that someone has contributed and you’ve verified, you merge it into your master branch, delete
the topic branch, and then continue the process. If we have a repository with work in two branches
named ruby_client and php_client that looks like History with several topic branches. and merge
ruby_client first and then php_client next, then your history will end up looking like After a topic
branch merge..

圖表 73. History with several topic branches.

141

圖表 74. After a topic branch merge.

That is probably the simplest workflow, but it can possibly be problematic if you’re dealing with
larger or more stable projects where you want to be really careful about what you introduce.

If you have a more important project, you might want to use a two-phase merge cycle. In this scenario,
you have two long-running branches, master and develop, in which you determine that master is
updated only when a very stable release is cut and all new code is integrated into the develop branch.
You regularly push both of these branches to the public repository. Each time you have a new topic
branch to merge in (Before a topic branch merge.), you merge it into develop (After a topic branch
merge.); then, when you tag a release, you fast-forward master to wherever the now-stable develop
branch is (After a project release.).

圖表 75. Before a topic branch merge.

142

圖表 76. After a topic branch merge.

圖表 77. After a project release.

This way, when people clone your project’s repository, they can either check out master to build the
latest stable version and keep up to date on that easily, or they can check out develop, which is the
more cutting-edge stuff. You can also continue this concept, having an integrate branch where all the
work is merged together. Then, when the codebase on that branch is stable and passes tests, you
merge it into a develop branch; and when that has proven itself stable for a while, you fast-forward
your master branch.

大量合併的工作六程

 The Git project has four long-running branches: master, next, and pu (proposed updates) for new
work, and maint for maintenance backports. When new work is introduced by contributors, it’s
collected into topic branches in the maintainer’s repository in a manner similar to what we’ve
described (see Managing a complex series of parallel contributed topic branches.). At this point, the
topics are evaluated to determine whether they’re safe and ready for consumption or whether they
need more work. If they’re safe, they’re merged into next, and that branch is pushed up so
everyone can try the topics integrated together.

143

圖表 78. Managing a complex series of parallel contributed topic branches.

If the topics still need work, they’re merged into pu instead. When it’s determined that they’re
totally stable, the topics are re-merged into master and are then rebuilt from the topics that were in
next but didn’t yet graduate to master. This means master almost always moves forward, next is
rebased occasionally, and pu is rebased even more often:

圖表 79. Merging contributed topic branches into long-term integration branches.

When a topic branch has finally been merged into master, it’s removed from the repository. The Git
project also has a maint branch that is forked off from the last release to provide backported patches

144

in case a maintenance release is required. Thus, when you clone the Git repository, you have four
branches that you can check out to evaluate the project in different stages of development, depending
on how cutting edge you want to be or how you want to contribute; and the maintainer has a
structured workflow to help them vet new contributions.

衍合與挑揀的工作流程

 Other maintainers prefer to rebase or cherry-pick contributed work on top of their master branch,
rather than merging it in, to keep a mostly linear history. When you have work in a topic branch and
have determined that you want to integrate it, you move to that branch and run the rebase command
to rebuild the changes on top of your current master (or develop, and so on) branch. If that works
well, you can fast-forward your master branch, and you’ll end up with a linear project history.

 The other way to move introduced work from one branch to another is to cherry-pick it. A cherry-pick
in Git is like a rebase for a single commit. It takes the patch that was introduced in a commit and tries
to reapply it on the branch you’re currently on. This is useful if you have a number of commits on a
topic branch and you want to integrate only one of them, or if you only have one commit on a topic
branch and you’d prefer to cherry-pick it rather than run rebase. For example, suppose you have a
project that looks like this:

圖表 80. Example history before a cherry-pick.

If you want to pull commit e43a6 into your master branch, you can run

$ git cherry-pick e43a6

Finished one cherry-pick.

[master]: created a0a41a9: "More friendly message when locking the index

fails."

 3 files changed, 17 insertions(+), 3 deletions(-)

This pulls the same change introduced in e43a6, but you get a new commit SHA-1 value, because the
date applied is different. Now your history looks like this:

145

圖表 81. History after cherry-picking a commit on a topic branch.

Now you can remove your topic branch and drop the commits you didn’t want to pull in.

Rerere

 If you’re doing lots of merging and rebasing, or you’re maintaining a long-lived topic branch, Git
has a feature called “rerere” that can help.

Rerere stands for “reuse recorded resolution” – it’s a way of shortcutting manual conflict
resolution. When rerere is enabled, Git will keep a set of pre- and post-images from successful merges,
and if it notices that there’s a conflict that looks exactly like one you’ve already fixed, it’ll just use
the fix from last time, without bothering you with it.

This feature comes in two parts: a configuration setting and a command. The configuration setting is
rerere.enabled, and it’s handy enough to put in your global config:

$ git config --global rerere.enabled true

Now, whenever you do a merge that resolves conflicts, the resolution will be recorded in the cache in
case you need it in the future.

If you need to, you can interact with the rerere cache using the git rerere command. When it’s
invoked alone, Git checks its database of resolutions and tries to find a match with any current merge
conflicts and resolve them (although this is done automatically if rerere.enabled is set to true).
There are also subcommands to see what will be recorded, to erase specific resolution from the cache,
and to clear the entire cache. We will cover rerere in more detail in Rerere.

為釋出的版本加上標籤
 When you’ve decided to cut a release, you’ll probably want to drop a tag so you can re-create that

release at any point going forward. You can create a new tag as discussed in Git 基礎. If you decide to
sign the tag as the maintainer, the tagging may look something like this:

146

$ git tag -s v1.5 -m 'my signed 1.5 tag'

You need a passphrase to unlock the secret key for

user: "Scott Chacon <schacon@gmail.com>"

1024-bit DSA key, ID F721C45A, created 2009-02-09

If you do sign your tags, you may have the problem of distributing the public PGP key used to sign your
tags. The maintainer of the Git project has solved this issue by including their public key as a blob in
the repository and then adding a tag that points directly to that content. To do this, you can figure out
which key you want by running gpg --list-keys:

$ gpg --list-keys

/Users/schacon/.gnupg/pubring.gpg

pub 1024D/F721C45A 2009-02-09 [expires: 2010-02-09]

uid Scott Chacon <schacon@gmail.com>

sub 2048g/45D02282 2009-02-09 [expires: 2010-02-09]

Then, you can directly import the key into the Git database by exporting it and piping that through git
hash-object, which writes a new blob with those contents into Git and gives you back the SHA-1 of
the blob:

$ gpg -a --export F721C45A | git hash-object -w --stdin

659ef797d181633c87ec71ac3f9ba29fe5775b92

Now that you have the contents of your key in Git, you can create a tag that points directly to it by
specifying the new SHA-1 value that the hash-object command gave you:

$ git tag -a maintainer-pgp-pub 659ef797d181633c87ec71ac3f9ba29fe5775b92

If you run git push --tags, the maintainer-pgp-pub tag will be shared with everyone. If anyone
wants to verify a tag, they can directly import your PGP key by pulling the blob directly out of the
database and importing it into GPG:

$ git show maintainer-pgp-pub | gpg --import

They can use that key to verify all your signed tags. Also, if you include instructions in the tag message,
running git show <tag> will let you give the end user more specific instructions about tag
verification.

產生一個建置編號
 Because Git doesn’t have monotonically increasing numbers like v123 or the equivalent to go with

each commit, if you want to have a human-readable name to go with a commit, you can run git
describe on that commit. Git gives you the name of the nearest tag with the number of commits on
top of that tag and a partial SHA-1 value of the commit you’re describing:

147

$ git describe master

v1.6.2-rc1-20-g8c5b85c

This way, you can export a snapshot or build and name it something understandable to people. In fact,
if you build Git from source code cloned from the Git repository, git --version gives you something
that looks like this. If you’re describing a commit that you have directly tagged, it gives you the tag
name.

The git describe command favors annotated tags (tags created with the -a or -s flag), so release
tags should be created this way if you’re using git describe, to ensure the commit is named
properly when described. You can also use this string as the target of a checkout or show command,
although it relies on the abbreviated SHA-1 value at the end, so it may not be valid forever. For
instance, the Linux kernel recently jumped from 8 to 10 characters to ensure SHA-1 object uniqueness,
so older git describe output names were invalidated.

準備釋出一個版本
 Now you want to release a build. One of the things you’ll want to do is create an archive of the latest

snapshot of your code for those poor souls who don’t use Git. The command to do this is git
archive:

$ git archive master --prefix='project/' | gzip > `git describe

master`.tar.gz

$ ls *.tar.gz

v1.6.2-rc1-20-g8c5b85c.tar.gz

If someone opens that tarball, they get the latest snapshot of your project under a project directory.
You can also create a zip archive in much the same way, but by passing the --format=zip option to
git archive:

$ git archive master --prefix='project/' --format=zip > `git describe

master`.zip

You now have a nice tarball and a zip archive of your project release that you can upload to your
website or email to people.

簡短的日誌
 It’s time to email your mailing list of people who want to know what’s happening in your project. A
nice way of quickly getting a sort of changelog of what has been added to your project since your last
release or email is to use the git shortlog command. It summarizes all the commits in the range
you give it; for example, the following gives you a summary of all the commits since your last release, if
your last release was named v1.0.1:

148

$ git shortlog --no-merges master --not v1.0.1

Chris Wanstrath (8):

 Add support for annotated tags to Grit::Tag

 Add packed-refs annotated tag support.

 Add Grit::Commit#to_patch

 Update version and History.txt

 Remove stray `puts`

 Make ls_tree ignore nils

Tom Preston-Werner (4):

 fix dates in history

 dynamic version method

 Version bump to 1.0.2

 Regenerated gemspec for version 1.0.2

You get a clean summary of all the commits since v1.0.1, grouped by author, that you can email to your
list.

Summary
You should feel fairly comfortable contributing to a project in Git as well as maintaining your own
project or integrating other users' contributions. Congratulations on being an effective Git developer!
In the next chapter, you’ll learn about how to use the largest and most popular Git hosting service,
GitHub.

149

GitHub
 GitHub 是個上面有大量 Git 倉儲的主機，同時也是數以百萬計的開發者和專案的交流中心。 有非常高比例
的 Git 倉儲是被託管在 GitHub 上的。同時也有很多的開源專案使用 GitHub 來做 Git 託管、議題追蹤、程式
碼審閱，還有其他各種用途。 雖然這並非 Git 開源計畫的直接目的，但在你專業的使用 Git 時，你還是有很
大的機會會想要或需要使用GitHub。

這章節是關於如何有效率的使用 GitHub。 這會包含帳號的申請和管理、 Git 倉儲的建立及使用、參與別人
的專案以及管理自己的專案的一般流程、GitHub 的應用程式介面，以及各式各樣能讓你更加便利的小技
巧。

如果你對於如何在 GitHub 上託管自己的專案或是與其他人一起在 GitHub上的專案上合作不感興趣的話，你
可以放心地直接前進到下個章節 Git Tools 。

警告
介面變更
有件很重要的事情是：就像其他的活動中的網站一樣，截圖中的使用者介面會隨時間改變。
希望這並不會影響到我們要做的事情，但如果你想要最新版的截圖，建議您去瀏覽線上版。

建立帳戶及設定
 你第一件要做的事就是建立一個免費的使用者帳戶。 只要去 http://github.com，選擇一個尚未被使用過的
使用者名稱，輸入一個電郵地址以及一個密碼，然後按下那個大大的綠色「Sign up for GitHub」按鈕就可
以了。

圖表 82. GitHub 的帳號申請畫面.

150

http://github.com

你會看到各種付費升級方案的頁面，但是在這裡我們只要選免費方案即可。 之後 GitHub 會寄給你一封電子
郵件來確認電郵地址。 因為這很重要所快點去做（我們等一下會解釋）。

筆記
你可以用免費帳戶使用 GitHub 所有的功能，但是你所有的專案都只能完全公開（所有人都有
讀取權限）。 GitHub 的付費方案會提供數個私人專案的額度，但在本書中我們不會提及這
個。

點擊畫面左上的 GitHub 圖示會連結到你的資訊主頁。 你現在可以開始使用 GitHub 了。

SSH 存取
 你現在就可以透過 https:// 協定並使用你剛剛設定的帳號及密碼來認證以連接你的 GitHub 倉儲。 但
是，如果只是要克隆公開專案，其實你連註冊都不用 － 剛剛建立的帳號是在我們之後要 fork 專案或是推送
變更到你複製的倉儲時才會用到。

如果想要使用 SSH 遠端，你必須要去設定一個公鑰。 （如果你沒有公鑰的話請參考 產生你的 SSH 公鑰。）
點擊視窗右上的連結開啟你的帳戶設定頁面:

“帳戶設定” 連結.

image::images/account-settings.png[``帳戶設定'' 連結。]

然後點選左側的「SSH keys」區塊。

圖表 83. “SSH keys” 連結.

點選 "Add an SSH key" 按鈕，之後替你的金鑰命名，複製你的 ~/.ssh/id_rsa.pub（或是任意檔名）
公鑰檔的內容並貼在文字區塊內，然後點擊「Add key」。

151

筆記 建議替你的金鑰取個容易記憶的名字。 你可以替你的每個金鑰取類似「我的筆電」或「工作
帳號」的名字，這樣在之後要撤銷金鑰時，你可以很輕易地找出你要撤銷的那個金鑰。

你的頭像
再來，你可以把那個自動生成的頭像換成你希望的那個圖像。 首先，切換到「profile」分頁（在 SSH keys
的上面那一個），然後點選「Upload new picture」。

圖表 84. 「Profile」連結.

我們會拿個 Git 的圖示來用，而且我們會需要剪裁它。

152

圖表 85. 裁切你的頭像.

之後你在網站上的任何互動，大家都會看到你的使用者名稱旁有你的頭像。

如果你剛好有在那知名的 Gravatar 上傳過頭像的話 （通常是 Wordpress 的帳戶會有用到），那個頭像會自
動被當成預設的頭像，你就不需要執行這個步驟。

你的電子郵件地址
GitHub 是用電郵地址把 Git commits 和使用者關聯在一起的。 如果你擁有多個電郵地址，而且你也想要
GitHub 把他們正確的和你關聯在一起，你需要去管理頁面的 Emails 區塊，加入所有你使用的電子郵件。

圖表 86. 加入電郵地址

在 加入電郵地址 這張圖裡面，我們可以看到各種狀態。 第一個地址是已認證而且設定為主要的電郵地址，
意味著所有的通知和其他信件都會寄到這個地址。 第二個地址是已認證，所以可以隨時被切換成主要的地
址。 最後一個是未認證的，意味著那並不能作為你的主要地址使用。 如果 GitHub 在站上的任意一個 Git 倉

153

儲的 commit 訊息裡發現有對應的電郵地址，它就會被連結到你的使用者。

二階段驗證
最後，為了得到額外的安全保障，你應該要設定二階段驗證（或稱作「2FA」）。 二階段驗證是個越來越熱
門的驗證技術，能夠在你的密碼被盜取的時候仍能保障你的帳戶的安全。 開啟這個功能後，GitHub 會要求
你提供兩個不同的方式來驗證。所以在其中一個失效時，攻擊者仍然不能存取你的帳號。

你可以在你的帳戶設定裡面的安全性分頁找到兩階段驗證的設定。

圖表 87. 安全性專頁內的兩階段驗證

在點擊「Set up two-factor authentication」按鈕之後，他會連結到設定頁面，讓你可以設定手機 App 以產
生第二階段驗證碼 （一個基於時間產生的一次性密碼），或者你也可以讓 GitHub 在你每次要登入時透過簡
訊發送一個驗證碼給你。

當你選擇並完成 2FA 的設定之後，你的帳戶會變得更安全。並在之後的每次登入，除了密碼你還要提供一個
驗證碼才能登入 GitHub。

參與一個專案
現在帳號設定好了，來看看一些關於如何對現有專案做出貢獻的有用小細節吧。

Fork 專案
 如果你想要參與一個你沒有推送權限的專案，你可以「fork」一份。這代表說 GitHub 會複製一份這個專案
的副本給你，並且你對這副本有全部的權限。這副本會存在於你的帳號下，你可以對它進行推送。

筆記
歷史上，「fork」這件事情在程式開發的領域裡多少帶了點負面意味。因為有些人會透過這途
徑將一個開源專案的發展帶往不同方向，甚至是創造出跟原本專案競爭的作品，進而導致貢
獻者的分裂。 在 GitHub 上，「fork」就是把一份相同的專案放在你的帳號之下，讓你能夠公
開對這專案做變更，做為一個以更開放的方式來參與專案。

154

透過這方式，專案就不用去煩惱需要把所有協作者加入使用者來讓他們擁有推送的權限。 所有人可以 fork
專案，對 fork 出來的專案推送變更，然後去發出我們等下會提到的 Pull Request，來把這些變更貢獻回原本
的專案裡。 這會開立一個能夠作程式碼審閱的討論串，然後擁有者能和貢獻者討論這個變更，直到擁有者覺
得可以合併進原始專案裡面。

去到專案頁面，點下右上角的「Fork」鍵，就可以 fork 專案。

圖表 88. 「Fork」鈕

幾秒鐘之後，你就會被帶到你有寫入權限的新專案頁面。

GitHub 流程
 GitHub 是基於一個以 Pull Request 為中心的特別合作流程而設計出來的。 這個流程，不論是你在一個緊密
連結的團隊裡共同在單一倉儲上合作；或是一個由散布全球的陌生人們構成的合作網路或是公司，透過大量
的 fork 專案來對專案做出貢獻，都能運作。 這一切都是基於我們在 使用 Git 分支 這章所講過的 主題分支 的
工作流程。

一般情況下就是照著下面的程序運作的：

1. 從 master 建立一個主題分支。

2. 加入一些變更來改善這個專案。
3. 把這個分支推送到你的 GitHub 專案。
4. 在 GitHub 上建立一個 Pull Request。
5. 討論，並在需要的時候加入新的變更。
6. 專案擁有者視情況決定要把這個 Pull Request 合併進原始專案，或是關閉它。

這基本上就是我們在 整合式管理員工作流程 這部分提過的整合式管理流程，不過我們是使用 GitHub 的網頁
工具來做溝通或是變更審閱，而非電子郵件。

我們來看看下面的例子來了解如何使用這個流程來對 GitHub 上的專案做出變更吧。

建立一個 Pull Request

Tony 在找能夠在他的 Arduino 可程式化微控制器上運作的程式碼。然後他在 GitHub 的這個專案
https://github.com/schacon/blink 找到了個很棒的程式碼。

155

https://github.com/schacon/blink

圖表 89. 他想要做出貢獻的專案

唯一的小問題就是閃爍的頻率太高了，我們覺得放慢成 3 秒一次會比原本的 1 秒一次好。 所以我們來改善這
個程式並作為變更要求來提交回去吧。

首先，我們要先按下稍早提過的「Fork」鈕來取得這個專案的副本。 我們在這邊使用的使用者名稱是
「tonychacon」，所以這個專案的副本會放在 https://github.com/tonychacon/blink，而且我們
能編輯這個副本。 我們把它克隆一份到電腦上、建立主題分支、對程式碼作變更，最後推送回 GitHub。

156

$ git clone https://github.com/tonychacon/blink ①
Cloning into 'blink'...

$ cd blink

$ git checkout -b slow-blink ②
Switched to a new branch 'slow-blink'

$ sed -i '' 's/1000/3000/' blink.ino ③

$ git diff --word-diff ④
diff --git a/blink.ino b/blink.ino

index 15b9911..a6cc5a5 100644

--- a/blink.ino

+++ b/blink.ino

@@ -18,7 +18,7 @@ void setup() {

// the loop routine runs over and over again forever:

void loop() {

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage

level)

 [-delay(1000);-]{+delay(3000);+} // wait for a second

 digitalWrite(led, LOW); // turn the LED off by making the voltage

LOW

 [-delay(1000);-]{+delay(3000);+} // wait for a second

}

$ git commit -a -m 'three seconds is better' ⑤
[slow-blink 5ca509d] three seconds is better

 1 file changed, 2 insertions(+), 2 deletions(-)

$ git push origin slow-blink ⑥
Username for 'https://github.com': tonychacon

Password for 'https://tonychacon@github.com':

Counting objects: 5, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 340 bytes | 0 bytes/s, done.

Total 3 (delta 1), reused 0 (delta 0)

To https://github.com/tonychacon/blink

 * [new branch] slow-blink -> slow-blink

① 把我們 fork 的專案克隆一份到本機
② 建立名稱有意義的主題分支
③ 對程式碼作變更
④ 確認這個變更一切 OK
⑤ 把變更加入我們的主題分支
⑥ 把我們的新分支推送回 GitHub 的 fork 上

如果我們回到我們在 GitHub 上的 fork，我們可以看到 GitHub 發現我們推了新分支上來，並且顯示了一個
大大的綠色按鈕讓我們可以檢視我們的變更，並能對原始專案開啟一個 Pull Request。

157

你也可以去到 在 https://github.com/<user>/<project>/branches 上的「Branches」頁面去找出
你的分支並從那邊開啟一個新的 Pull Request。

圖表 90. Pull Request 按鈕

 如果我們按下綠色按鈕，我們會看到一個畫面，要求我們針對這次的 Pull Request 編寫「標題」和「描
述」。 花費一些心思在這上面總是值得的，因為好的說明可以幫助原專案的擁有者去確認「你所嘗試的事
情」、「你提案的變更內容是否正確」以及「接受這些變更是否有改善到原專案」。

同時我們也會看到在主分支沒有的所有提交列表（在這個範例中只有一個提交），和一個彙整所有修改的差
異資訊，以便讓其他人知道當原作者合併後會有哪些差異。

158

圖表 91. Pull Request 建立頁面

當你按下畫面中的「Create pull request」按鈕時，你 fork 的來源專案的擁有者會收到一個通知，通知他有
人建議一個變動並且會附上連往包含所有資訊的頁面連結。

筆記
雖然在這種公開專案上，Pull Requests 通常都是在貢獻者已經準備好要加入的變更時才會發
出；但是它常用於專案「剛開始」時的一些內部專案。基於 Pull Request 在建立「之後」仍
然可以持續加入新的變更的特性，因此也常會在初期建立當作一個團隊合作的環境，而非在
最後才使用。

重複使用一個 Pull Request

現在呢，專案的擁有者可以閱覽所有建議的變更，然後決定要合併進來、拒絕變更或是對這留下評論。在這
邊我們當作他覺得他喜歡這點子好了，但是他覺得燈暗掉的時間要比亮的時間長一點。

這個互動或許會透過電子郵件並依照在 分散式的 Git 提到的工作流程運作；而在 GitHub 上，這是在線上運
作的。專案擁有者可以在審閱差異總表時，點一下想要評論的那行內容並留下評論。

159

圖表 92. 對 Pull Request 的某行程式碼下評論

當維護者留下評論，建立這個 Pull Request 的人（以及所有關注這個倉儲的人）都會收到通知。我們等等會
對這做自訂，不過如果有開啟電子郵件通知，Tony 會這樣的一封信：

圖表 93. 以電子郵件型式寄送的評論

其他人也可以對 Pull Request 留下一般評論。 在 Pull Request 討論頁 裏面我們可以看到專案擁有者對某行
程式碼做評論，同時也在討論區塊留了一般評論。你可以看到程式碼評論也會被帶到這個互動之中。

160

圖表 94. Pull Request 討論頁

現在貢獻者就可以知道他要做哪些處理才能讓擁有者接受這個變更。 幸好這事也很直觀。 如果是透過電子郵
件的話你需要把所有的變動重新執行一次然後重新上傳，但是在 GitHub 上你只要對主題分支再次做提交然
後推送上去，即可更新該 Pull Request。 在 結束 Pull Request 中，你也可以看到 Pull Request 中舊的程式
碼上的評論都被折疊起來，這是因為它所評論的程式碼已經被更新了。

如果是在已發出的 Pull Request 中再加入新的提交並不會觸發通知，所以一旦 Tony 以這種方式推送修正，
他需要再留下一個評論以通知專案擁有者：他已完成所要求的修改。

161

圖表 95. 結束 Pull Request

有個有趣的東西就是如果你點開 Pull Request 的「Files Changed」分頁，你會得到一份「統整過的」差異
表 —— 也就是所有當這個主題分支被合併進主要分支時會做的變動。以「git diff」的方式來講，就是自動顯
示給你對 Pull Request 指定的主題分支做「git diff master…<branch>」的結果。看 決定要提到哪些資訊
來了解更多關於這種差異表的事情。

另外一件你會注意到的就是 GitHub 會確認這個 Pull Request 是否能直接合併，並顯示一個能讓你直接在伺
服器上做合併的按鈕。這個按鈕只有在你對這個倉儲有寫入權限，而且能簡易的合併時才會出現。當你按下
這個按鈕時，GiHub 會做一個「非快速向前」的合併，意味著即使這個合併「能」以快速向前的方式處
理，GitHub 還是會建立一個合併的提交。

你可以基於你的偏好改用這樣的方式：pull 這個分支下來，然後在本機合併進去。如果你把這個分支合併進
master 分支並推送上 GitHub，對應的 Pull Request 會自動關閉。

大部分的 GitHub 專案都使用著這樣的基本流程。建立主題分支，基於這分支建立 Pull Request，針對這個

162

做討論，可能還會在這分支上做更多變更，最後這個要求就被關閉或合併了。

筆記

不只有 Forks
有件很重要的事情是：你也可以對同個倉儲的兩個分支做 Pull Request。如果你跟別人在一
個雙方都有寫入權限的專案編寫新功能；你可以推送一個主題分支到倉儲裡，然後以這個分
支對同個專案裡的 master 建立一個 Pull Request，藉此來做程式碼審閱以及討論。這不需
要 Fork。

Pull Request 的進階用法
現在我們已經講完關於對 GitHub 上的專案做貢獻的基本部份了。來看看一些讓你可以更有效率的使用 Pull
Request 的小技巧吧。

把 Pull Request 做成補丁

有件很重要的事情是：很多專案並不會把這些 Pull Request 當成一系列可以乾淨確實的使用的完美補丁，就
像許多基於郵件清單運作的專案對系列補丁貢獻的看法。大多數的 GitHub 專案是把 Pull Request 分支用來
做多次對期望變更的交流溝通，並將結果集中在一個差異檔，並用其做合併。

這是個很重要的差異，因為通常變動會在程式碼完備之前就被提出，這點跟基於郵件清單的運作模式是天差
地遠的。這讓維護者們可以更早做溝通，讓適合的解決方案可以在接受更多社群能量下誕生。當有人使用
Pull Request 提出程式碼，然後維護者或是社群建議了一個變更，雖然這補丁系列不會重來，但相對的會以
一個新的提交的形式加入這個分支，並讓討論和背景可以齊頭並進。

舉例來說，你可以回到 結束 Pull Request 這邊看看，你會注意到那個貢獻者並沒有把他的提交重組之後另外
開個新的 Pull Request，而是加入新的提交並推送到原本的分支。如果之後你回去看看 Pull Request，你可
以看到之前我們為何做了這樣的變動的背景。當按下網站上的「Merge」鈕時，會建立一個參考那個 Pull
Request 的合併提交，這樣當有需要時你可以很容易的就找到它並研究當初的交談內容。

跟上上游

如果你的 Pull Request 因為過期或是其他原因導致不能很乾淨的合併，你就會希望去處理這個問題來方便維
護者合併它。GitHub 會自動對這點做測試並在頁面最下方告訴你這個 Pull Request 是否能簡易的合併。

圖表 96. 不能乾淨的合併的 Pull Request

如果你看到類似 不能乾淨的合併的 Pull Request 的畫面，你就會希望去對你的分支做修正讓那個標示轉綠，
之後維護者就不需要做額外的事。

你有兩個方式可以來處理這個狀況。你可以用變基把你的分支接在目標分支 (通常會是你 fork 的專案的
master 分支) 上，或是把目標分支合併進你的分支。

大部分在 GitHub 上的開發者都會選擇後者，基於上個章節所提的理由：我們看重的是歷史紀錄和最終的合
併，所以變基除了給你一個乾淨一點點的歷史之外，你得到的只會是「非常」大的困難並且更容易犯錯。

如果你想要先對目標分支合併使得你的 Pull Request 能被自動合併，你可以把原始倉儲設定成一個新的遠
端、從上面擷取資訊、把那個倉儲的主要分支合併進你的主題分支，修正任何可能的問題，最後再推送回你
的開 Pull Request 的 主題分支。

163

舉之前「tonychacon」的例子來說，原始作者做了一個會和 Pull Request 衝突的變更。所以我們來看看解
決這個問題的步驟吧。

$ git remote add upstream https://github.com/schacon/blink ①

$ git fetch upstream ②
remote: Counting objects: 3, done.

remote: Compressing objects: 100% (3/3), done.

Unpacking objects: 100% (3/3), done.

remote: Total 3 (delta 0), reused 0 (delta 0)

From https://github.com/schacon/blink

 * [new branch] master -> upstream/master

$ git merge upstream/master ③
Auto-merging blink.ino

CONFLICT (content): Merge conflict in blink.ino

Automatic merge failed; fix conflicts and then commit the result.

$ vim blink.ino ④
$ git add blink.ino

$ git commit

[slow-blink 3c8d735] Merge remote-tracking branch 'upstream/master' \

 into slower-blink

$ git push origin slow-blink ⑤
Counting objects: 6, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (6/6), done.

Writing objects: 100% (6/6), 682 bytes | 0 bytes/s, done.

Total 6 (delta 2), reused 0 (delta 0)

To https://github.com/tonychacon/blink

 ef4725c..3c8d735 slower-blink -> slow-blink

① 將原本的倉儲新增為遠端，並取名為「upstream」
② 從這個遠端擷取最新的內容
③ 把主要分支合併進你的主題分支
④ 修正產生的衝突
⑤ 再推送回同一個主題分支

當你做完上述步驟，Pull Request 會自動更新並檢查是否能乾淨的合併。

164

圖表 97. Pull Request 現在能乾淨的合併了

Git 偉大的事情之一就是你可以一直重複這個過程。當你有個長期運作的專案時，你可以很簡單的重複對目
標分支做合併，而你只要對最近一次的合併產生的衝突做處理即可，讓這個程序易於管理。

如果你一定要對分支做變基，你還是可以這樣做，不過強烈建議你不要強制對已經開了 Pull Request 分支做
推送。如果其他人已經 pull 下來而且做了些變動，你會遇到所有在 使用衍和的危險 描述的問題。相對的，
應該要把變基過的分支推送到 GitHub 上的新分支，然後建立一個參考至舊的 PR 的新 Pull Request，之後關
閉原本的 PR。

參考

你的下一個問題可能是「我要怎麼對舊的 Pull Request 做參考連結？」。這有非常非常多的方法可以對其他
東西做參考連結，幾乎所有你在 GitHub 上能撰寫訊息的地方都可以做到。

先從怎麼在 Pull Request 或是議題互相做參考開始吧。所有的 Pull Request 在專案裡都會被賦與一個獨一
無二的編號。舉例來說你不能同時擁有 Pull Request #3 和議題 #3。如果你要在 Pull Request 裡參考其他的
Pull Request 和議題，你只要在評論或描述打下 #<num> 即可。你也可以指定參考不在同個專案裡的專案；
如果是在同一個倉儲的 fork 裡你可以用 username#<num> 指定，或是 username/repo#<num> 來指定別
人的其他倉儲裡的專案。

來看個範例吧。假設我們們在上個範例選擇使用變基處理分支，並為此開了新的 Pull Request，之後我們想
要在新的 PR 裡放個參考連結到舊的。而且我們也想要參考一個在這個倉儲的 fork 裡的議題，還有一個在完
全不同的專案裡的議題。我們的描述就可以用 Pull Request 裡的跨倉儲參考 裡的寫法。

165

圖表 98. Pull Request 裡的跨倉儲參考

當我們送出這個 pull request，我們可以看到內容被渲染成 在 Pull Request 中被渲染後的跨倉儲參考。 裡的
型式。

圖表 99. 在 Pull Request 中被渲染後的跨倉儲參考。

可以注意到那完整的 GitHub 網址被簡化了，只留下必需的資訊。

如果 Tony 現在去關閉原本的 Pull Request，當我們在新的 PR 標記它時會得知這件事情，因為 GitHub 會自
動在 PR 的時間線上對這件事做反向追蹤。這意味著所有造訪舊的 PR 頁面的人會知道這個 PR 已經被一個新
的 PR 取代了，並且能簡單的透過連結造訪新的 PR 頁面。這連結看起來就是 在 Pull Request 中被渲染後的
跨倉儲參考。 這樣。

166

圖表 100. 在 Pull Request 中被渲染後的跨倉儲參考。

除了議題編號之外，你也可以用 SHA-1 對一個提交做參考。你必須完整的標出 40 字元的 SHA-1，然後
GitHub 在評論裡看到那個 SHA-1 時就會產生該提交的超連結。而且你也可以用和議題一樣的方式，對其他
fork 甚至是其他倉儲的提交做參考。

Markdown
連結其他議題，對於你在 GitHub 大多數的文字方塊裡能做的有趣事情而言，只是個開始。在議題、PR 描
述、評論、程式碼評論，以及其他更多的地方，你都可以使用「GitHub 風格的 Markdown」。Markdown
能以純文字方式編輯，但能渲染出豐富的內容。

看看 一個顯示出 Markdwon 撰寫型式和渲染結果的範例 的範例來看看文字和評論能怎樣撰寫，並接著以
Markdwon 的方式渲染。

圖表 101. 一個顯示出 Markdwon 撰寫型式和渲染結果的範例

GitHub Flavored Markdown

GitHub 風格的 Markdown 增加了許多你在基本 Markdown 語法做不到的事。這些在你要建立有用的 Pull
Request、議題評論、描述時，會非常的有用。

167

工作清單

第一個專屬於 GitHub 的 Markdown 功能，特別是在 Pull Request 上，就是工作清單。工作清單就是一系列
對應到你想要完成的事情的核取方塊。把這放在議題或是 Pull Request 裡時，通常表明了你想要完成的事
項。

你可以建立這樣的工作清單:

- [X] 撰寫程式碼
- [] 撰寫所有的測試項
- [] 為程式碼做文件

如果我們在 Pull Request 的描述裡或是議題裡加入這個，我們就能看到他被渲染成像 Markdwon 評論裡渲
染後的工作清單。 這樣。

圖表 102. Markdwon 評論裡渲染後的工作清單。

這個功能在 Pull Request 裏面，常被用來聲明在合併之前，你想要在這個分支裡完成的事情。最酷的地方就
是你只要點下核取方塊就能更新你的評論－你不需要為了標記工作完成而得修改 Markdown。

除此之外，GitHub 還會把議題和 Pull Request 裡面所有的工作清單整理起來，把它們作為後設資料顯示在
Pull Request 的清單頁面。舉例來說，如果你的 Pull Rewquest 裡面有工作清單，你可以在所有 Pull
Request 的總覽頁面上看到進度。這讓人們得以把一個 Pull Request 分解成數個小工作，同時也便於其他人
追蹤這個分支上的進度。你可以在 在 Pull Request 清單裡的工作清單統整。 看到關於這個功能的範例。

圖表 103. 在 Pull Request 清單裡的工作清單統整。

當你在實作一個功能的開始就開了 Pull Request，並使用工作清單追蹤進度時，這個功能會驚人的好用。

程式碼摘錄

你也可以在評論裡摘錄某段程式碼。當你想要展示某段還沒提交到分支的變更時，這會非常的有用。這在展
示無法正常運作或是這個 Pull Request 可以實作的的程式碼時也會用到。

你摘錄的程式碼需要用反引號「包」起來。

168


```java

for(int i=0 ; i < 5 ; i++)

{

   System.out.println("i is : " + i);

}

```

如果你在上面那段代碼的 java 的位置放上其他的程式語言名稱，GitHub 也會試著做語法上色。如果以我們
上面的範例來說，上面那段代碼最後會被渲染成 被渲染過的嵌入程式碼片斷 的樣子。

圖表 104. 被渲染過的嵌入程式碼片斷

引文

如果你要對一長段評論的一部份做回應，你只要複製你需要的片斷，然後在前面加上 > 即可。事實上，因為
這個功能因為太實用也太常用到，所以有一個專用的快捷鍵可用。如果你把評論你要回應的文字反白起來，
並按下 r 鍵，那段文字就會被引文到評論欄裡供你使用。

引文的部份看起來就像這樣：

> Whether 'tis Nobler in the mind to suffer

> The Slings and Arrows of outrageous Fortune,

How big are these slings and in particular, these arrows?

經過渲染之後評論就會變成 渲染過的引文範例 這個樣子。

169

圖表 105. 渲染過的引文範例

表情符號

最後就是你可以在評論裡使用表情符號。這個東西很常出現在許多 GitHub 議題和 Pull Request 的評論裏
面。GitHub 上甚至有表情符號工具。如果你在評論裡用了 : 當作開頭，自動完成會協助你找出你想要的表
情。

圖表 106. 表情符號的自動完成提示

你可以在評論的任何地方打出 :<name>: 來使用表情符號。舉例來說，你可以寫出這樣的東西：

I :eyes: that :bug: and I :cold_sweat:.

:trophy: for :microscope: it.

:+1: and :sparkles: on this :ship:, it's :fire::poop:!

:clap::tada::panda_face:

170

經過渲染之後會變成這樣 使用大量表情符號的評論：

圖表 107. 使用大量表情符號的評論

雖然不能說它是是個非常實用的功能，但它能在這種不方便表達情緒的媒介裡，加入了由趣味和心情構成的
元素。

筆記
事實上現在有不少的網路服務可以在上面使用表符字元。這邊有張非常好用的大抄可以讓你
很快到找到能表達你現在情緒的符號：

http://www.emoji-cheat-sheet.com

圖片

技術上來說，雖然這並不是 GitHub 風格的 Markdown，但是還是非常的實用。如果不想用 Markdown 圖片
語法這種很難知道是什麼圖片的方法之外，GitHub 允許你以把圖片拖曳至文字方塊的方式來嵌入圖片。

圖表 108. 以拖曳的方式來上傳並自動嵌入圖片

171

http://www.emoji-cheat-sheet.com

如果你回到 Pull Request 裡的跨倉儲參考，你會在文字區塊上看到一個小小的「Parsed as Markdown」提
示。點一下那個提示，他就會提供你包含所有在 GitHub 上可以用 Markdown 做的事的小抄。

維護專案
現在我們可以舒適自在地對一個專案做出貢獻了，所以我們來看看另一個面向：建立、維護以及管理一個專
案。

建立一個新倉儲
來建立一個拿來分享我們的原始碼的倉儲吧。 首先點擊主控面板右邊的「New Repository」；或是點擊頂
端工具列裡面使用者名稱旁邊的 + 按鈕，如 「New repository」下拉式選單. 所示。

圖表 109. 「Your Repositories」區塊

圖表 110. 「New repository」下拉式選單.

這會把你帶到「new repository」表單的所在頁面：

172

圖表 111. 「new repositroy」表單

你只需要提供專案名稱，因為剩餘的欄位是完全選擇性的。 現在，你只要點下「Create Repository」鈕，
然後碰地一聲——你就擁有了一個在 GitHub 上名為 <user>/<project_name> 的全新倉儲了。

因為你這個倉儲還沒有任何原始碼在裡面，GitHub 會展示一份關於如何建立一個全新的 Git 倉儲或是連結一
個舊有 Git 專案的指引。 我們在這邊不會對這這部份多做描述，如果你需要回憶一下，去看看 Git 基礎 吧。

現在你的專案被託管在 GitHub 上了，你可以把網址給任何你想要分享專案的人。 所有人都可以透過
https://github.com/<user>/<project_name> 以 HTTP 方式存取，或是透過
git@github.com:<user>/<project_name> 以 SSH 方式存取。 Git 可以透過上述兩種途徑來推送及擷
取資料，但所有操作都會透過對其連結的使用的驗證資訊來做存取控管。

筆記
通常公開專案會傾向於分享基於 HTTP 的網址，因為這樣沒有 GitHub 帳戶的使用者也能夠對
其存取來拓製專案。 如果你給了 SSH 版本的網址，使用者必須建立一個帳戶並加入 SSH key
才能存取專案。 而且 HTTP 網址就是他們會貼在瀏覽器裡來瀏覽專案的網址。

增加協作者
你必須要把和你合作的人加入「協作者」，這樣他們才能對專案提交變更。 如果 Ben、Jeff 和 Louise 都有
GitHub 帳戶，而且你想要給他們推送變更的權限，你可以把他們加到你的專案。 把他們加入專案後，他們
可以對專案「推送」變更，這意味著他們有這專案及專案的 Git 倉儲的讀寫權限。

點擊右側欄最下面的「Settings」連結。

173

圖表 112. 倉儲設定連結。

接著選擇右邊選單的「Collaborators」。 然後在文字方塊裡輸入使用者名稱，按下「Add collaborator」。
你可以一直重複這個步驟來賦予所有你想要的人存取權限。 如果你要收回權限，只要點一下那個使用者右手
邊的「X」即可。

圖表 113. 倉儲協作者

管理 Pull Requests
現在你擁有一個裡面有些原始碼的專案，同時也可能會有些擁有推送權限的協作者。然後我們來看看當你收
到 Pull Request 時要如何處理吧。

Pull Requests 可能是來自某個 fork 裡的分支，或是同個倉儲裡的某個分支。 兩者之間只差在，來自其他
fork 的 PR 通常你沒有對他們分支的推送權限，他們也沒有；而內部 PR 就是雙方都能存取分支。

關於這些東西的範例，我們就在這邊假設你是「tonychacon」而且你建立了一個名叫「fade」的 Arduino
原始碼專案吧。

174

電郵通知

有人對你的原始碼做了些變更，然後發給你一個 Pull Request。 這時你應該會收到像 對於新的 Pull
Request 的電郵通知。 這樣的郵件。

圖表 114. 對於新的 Pull Request 的電郵通知。

這電郵裡面有些值得注意的東西。 他會給你一個簡易的差異狀態——一個在這 Pull Request 之中被變更的檔
案清單，以及變動量。 內附一個 GitHub PR 連結。 同時也會給你一些可以從指令列操作的網址。

你可能會注意到這行指令 git pull <url> patch-1，這行指令是可以在不用增加遠端的情況下合併一個
遠端分支的簡易方式。 我們曾在 切換到遠端分支 簡短的提過。 你可以去建立並切換至主題分支，然後執行
這條指令以合併 Pull Request 中的變更。

其他有趣的網址就是 .diff 和 .patch，你或許猜的到，他們分別提供 Pull Request 的統合差異和系列補
綴。 你可以以下述方式來做技術性的合併：

$ curl http://github.com/tonychacon/fade/pull/1.patch | git am

在 Pull Request 裡合作

就如我們在 GitHub 流程 提過的，你現在可以和建立 Pull Request 的人對談了。 你可以針對某幾行原始碼提
出評論、對一整個提交做評論或是對一整個 Pull Request 做評論，而且你在其中每個部分都可以使用
GitHub 風格的 Markdown。

每當有人在 Pull Request 裡留下評論時，你都會收到一封電郵通知，這樣你就能掌握整個 Pull Request 的
動態。 每次通知都會附有連結連往 Pull Request 有活動的部分，同時你也可以直接回覆郵件以在 Pull
Request 討論串中評論。

175

圖表 115. 包含在討論串中的電郵回覆。

當你覺得 PR 裡面的原始碼已經可以合併的時候，你可手動拉取，然後在本地端合併；或是用 git pull
<url> <branch> 這個稍早看過的語法；也可以把那個 fork 加入成遠端之一之後再擷取並合併。

如果這只是個簡單的合併，你可以按下 GitHub 網站上的「Merge」按鈕來解決。 這會做一個「非快進」的
合併——即便是可以快進，仍會建立合併提交。 這意味著，不論你在何種情況按下「Merge」，都會建立一
個合併提交。 如果你點了提示連結，GitHub 就會會提供你所有的資訊，就像你在 Merge 按鈕和手動合併
Pull Request 的指引。 看到的一樣。

圖表 116. Merge 按鈕和手動合併 Pull Request 的指引。

如果你決定不要合併這個 Pull Request，你只需要關閉這個 Pull Request 即可，同時建立這個 Pull Request
的人也會收到通知。

Pull Request 參照

如果你要處理 非常多 的 Pull Request 而且不想加入一堆的遠端或是一直做只會用到一次的拉取，關於這點
GitHub 提供了一個好用的小技巧給你用。 這是個有點進階的技巧，所以我們會在 The Refspec 提到更多的
細節，不過還是非常的有用。

事實上 GitHub 會把倉儲的 Pull Request 當成伺服器上的假分支。 預設情況下你不會在拓製的時候取得它
們，但他們還是以隱藏的狀態存在著而且你可以用非常簡單的方式取得它們。

176

To demonstrate this, we’re going to use a low-level command (often referred to as a “plumbing”
command, which we’ll read about more in Plumbing and Porcelain) called ls-remote. This
command is generally not used in day-to-day Git operations but it’s useful to show us what
references are present on the server. 為了展示這個事實，我們要使用一個比較低階的指令（通常會被稱作
「底層」指令，關於這點我們會在 Plumbing and Porcelain 再做詳細描述）—— ls-remote。 這指令通常
不會在日常的 Git 操作使用，但在展現伺服器上的所有參照是非常有用的。

如果對我們之前的「blink」倉儲使用這條指令，我們會得到在伺服器上這個倉儲裡所有的分支、標籤和其他
各種參照的清單。

$ git ls-remote https://github.com/schacon/blink

10d539600d86723087810ec636870a504f4fee4d HEAD

10d539600d86723087810ec636870a504f4fee4d refs/heads/master

6a83107c62950be9453aac297bb0193fd743cd6e refs/pull/1/head

afe83c2d1a70674c9505cc1d8b7d380d5e076ed3 refs/pull/1/merge

3c8d735ee16296c242be7a9742ebfbc2665adec1 refs/pull/2/head

15c9f4f80973a2758462ab2066b6ad9fe8dcf03d refs/pull/2/merge

a5a7751a33b7e86c5e9bb07b26001bb17d775d1a refs/pull/4/head

31a45fc257e8433c8d8804e3e848cf61c9d3166c refs/pull/4/merge

當然，如果你在你的倉儲裡使用 git ls-remote origin 或是對其他任一個想確認的遠端使用，你會得到
一個與這類似的結果。

如果你的倉儲是在 GItHub 上，而且有開放中的 Pull Request；你會看到一些以 refs/pull/ 開頭的參照。
它們基本上也是分支，但是因為他們不是以 refs/heads 起頭，所以你一般來說不會在拓製或擷取時從伺服
器下載到他們——擷取的過程會忽略它們。

每個 Pull Request 都會有兩個參照——以 /head 結尾的是對應到目前 Pull Request 分支的最後一個提交。
所以，如果有人在我們的倉儲開了一個 Pull Request，而且他的分支名稱叫做 bug-fix 還有它指向
a5a775 這個提交，在之後我們的倉儲裡並不會出現 bug-fix 這個分支，但我們會出現指向 a5a775 的
pull/<pr#>/head。 這意味著我們可以非常簡單的直接拉取所有 Pull Request 分支，而非加一大堆的遠端
來解決。

現在，你可以直接做些事––好比說擷取參考。

$ git fetch origin refs/pull/958/head

From https://github.com/libgit2/libgit2

 * branch refs/pull/958/head -> FETCH_HEAD

這告訴了 Git：「連結到名為 origin 的遠端，並下載名為 refs/pull/958/head 的參考。」 Git 很樂意
的照做了，之後下載了所有建立這個參考的必要資訊，之後就在 .git/FETCH_HEAD 裡放了一個指向你所需
要的提交的指針。 你可以接著在你想要測試的分支裡執行 git merge FETCH_HEAD，不過這個合併提交的
訊息可能會有點奇怪。 不過，如果你需要審閱「一大堆」的 Pull Request，這會顯得相當的枯燥乏味。

也是有辦法可以擷取「全部」的 Pull Request 的，而且可以在你每次連接到遠端時更新。 用你習慣的編輯器
打開 .git/config，並且找到關於遠端 origin 的部份。 通常會長的像這樣：

177

[remote "origin"]

 url = https://github.com/libgit2/libgit2

 fetch = +refs/heads/*:refs/remotes/origin/*

以 fetch = 開頭的那行是個「參照規格」。 這是個本地端的 .git 資料夾裏面的名稱對應到遠端的方法。
這一段告訴 Git：「在遠端 refs/heads 之下的東西，要保存在本地倉儲的 refs/remotes/origin 之
下。」 你可以編輯這個段落以加入其他的參照規格：

[remote "origin"]

 url = https://github.com/libgit2/libgit2.git

 fetch = +refs/heads/*:refs/remotes/origin/*

 fetch = +refs/pull/*/head:refs/remotes/origin/pr/*

最後一行告訴 Git：「所有類似 refs/pull/123/head 的參照都會以 refs/remotes/origin/pr/123
的型式儲存在本地端。」 所以現在存檔，然後執行 git fetch：

$ git fetch

…

 * [new ref] refs/pull/1/head -> origin/pr/1

 * [new ref] refs/pull/2/head -> origin/pr/2

 * [new ref] refs/pull/4/head -> origin/pr/4

…

現在所有遠端的 Pull Request 都會以類似追蹤分支型式的參照出現在本端；他們是唯讀的，並且會在你做擷
取的時候更新。 這讓在本地端測試 pull request 裡的程式碼變成超級簡單的事：

$ git checkout pr/2

Checking out files: 100% (3769/3769), done.

Branch pr/2 set up to track remote branch pr/2 from origin.

Switched to a new branch 'pr/2'

你們其中某些比較眼尖的人可能已經注意到參照規格中遠端部份的尾巴的 head。 這同時也是 GitHub 端一
個名為 refs/pull/#/merge 的參照，這代表著當你點下網站上的「Merge」鈕時會產生的提交。 這讓你
甚至可以在按下按鈕前測試合併結果。

對應到 Pull Request 的 Pull Request

你不只可以對主要分支或是 master 分支建立 Pull Request，你也可以對這整個網絡裡的任意一個分支做同
樣的事。 事實上，你甚至可以對另外一個 Pull Request 做 Pull Request。

如果你發現一個 Pull Request 正在往良好的方向發展，而你也想加點依賴於它的變更、或是你只是不確定這
變更否是個好主意、甚至只是因為你沒有對目的分支推送的權限時，你都可以直接對它開 PR。

當你要開啟一個 Pull Request 時，頁面最上方會有個區塊可以讓你選擇要請求擁有者在哪個分支上拉取變
更，以及要從哪個分支拉取。 如果你按下右手邊的「Edit」鈕，你不只能指定分支，也可以指定 fork。

178

圖表 117. 手動指定 Pull Request 的目標 fork 和分支

在這邊你可以相當簡單的方式決定你要把你的新分支合併到另一個 Pull Request 或是這專案底下的其他
fork。

提及他人和通知
GitHub 也有非常好的通知系統，讓徵詢特定人或團隊的意見變成一件易如反掌的事。

在任意一個專案裡，當你一輸入 @ 這個字元後，自動完成就會提供給你所有這個計畫的協作者和貢獻者的顯
示名稱及使用者名稱。

圖表 118. 輸入 @ 來提到其他人

你也可以提及某個並沒有出現在這個下拉式清單的使用者，不過自動完成通常會更快把牠抓出來。

當你發佈了一個有提到其他使用者的評論時，那些被標記的人會收到通知。 這意味著這會是一個非常有效率
的把人拉入討論的方式，而非讓那些人主動追蹤討論進度。 在 GitHub 上人們很常把同團隊或是同公司的人
拉近討論裡，藉以審閱 Pull Request 或是議題。

如果有人被標記，會被自動訂閱提到他們的 Pull Request 或是議題，之後就會收到所有相關的動態。 你也會
自動訂閱所有你建立的東西、你觀注的版本庫或是你曾經發表過評論的東西。 如果你不想繼續收到通知，你
可以按下頁面裡的「Unsubscribe」鈕來停止收到後續的更新。

179

圖表 119. 取消訂閱 PullRequest 或是議題。

通知總覽頁面

當我們在這邊提到關於 GitHub 的「通知」時，這是指 GitHub 試著讓你跟上新發生的事件的方式，而且你也
有許多方式可以自訂。 如果進到設定頁面的「Notification Center」分頁，你會看到一些可以使用的選項。

圖表 120. 通知中心選項。

在這邊你有兩種取得通知的方式可以選擇––「電子郵件」和「網頁」，你可以決定當你在在參與事情或是接
收你關注的版本庫的動態時，你要如何透過這兩個管道接受通知。

180

網頁通知

網頁通知僅存在於 GitHub 上，而你也只能在 GitHub 上檢視。 如果你有選用這個選項，當你在收到通知的
時候，你會在頁面上方的通知圖示上看到一個藍點，就如 通知中心 所示。

圖表 121. 通知中心

如果你點一下那個圖示，你會看到以專案分類的通知清單。 你也可以點擊-左側列表裡的專案名稱來過濾出
關於個專案的通知。 你也以按下任一項通知右側的勾選圖示來確認接收，或是點下專案名稱旁的勾選圖示來
接收所有關於這個專案的通知。 勾選圖示旁邊也有個靜音按鈕，當你點下那個圖示，代表你將不會收到那項
東西的後續通知。

這些工具對於管理大量的通知來說是非常的方便。 許多的 GitHub 的進階使用者會直接關掉所有的電郵通
知，然後在這頁面上管理所有的通知。

電郵通知

電郵通知是 GitHub 上另一個接受通知的方式。 如果你開啟這個選項，之後每當你收到通知，你就會收到一
封電郵。 我們可以在 以電子郵件型式寄送的評論 和 對於新的 Pull Request 的電郵通知。 有範例。 這廂電
子郵件會自動討論串化，如果你在使用討論串式的電郵客戶端，這會是個好事情。

GitHub 會再寄給你的通知郵件的標頭里嵌入相當多的後設資訊，這樣你在建立自訂過濾條件時可以更得心
應手。

舉例來說，如果展開在 對於新的 Pull Request 的電郵通知。 寄給 Tony 的郵件的真實標頭，我們會看到這樣
被寄出的訊息。

181

To: tonychacon/fade <fade@noreply.github.com>

Message-ID: <tonychacon/fade/pull/1@github.com>

Subject: [fade] Wait longer to see the dimming effect better (#1)

X-GitHub-Recipient: tonychacon

List-ID: tonychacon/fade <fade.tonychacon.github.com>

List-Archive: https://github.com/tonychacon/fade

List-Post: <mailto:reply+i-4XXX@reply.github.com>

List-Unsubscribe: <mailto:unsub+i-XXX@reply.github.com>,...

X-GitHub-Recipient-Address: tchacon@example.com

這裡面有不少有趣的東西。 如果你想針對特定專案甚至是 Pull Request 的電郵做特別標示或是轉寄時，
「Message-ID」這項以 <user>/<project>/<type>/<id> 的格式提供了所有資訊。 如果這是個議
題，`<type>`這部分就會是「issue」而非「pull」。

而而你如果有個能夠解析 List-Post 和 List-Unsubsribe 這兩個欄位的電郵客戶端的話，你就能直接發
表意見到清單裡， 或是直接「取消訂閱」這個串，就像你直接在那 Pull Request 或是議題頁面上做的一樣。

值得一提的是，如果你同時啟用網頁和電郵通知，當你使用允許內嵌圖片的郵件客戶端開啟通知郵件時，網
頁上的通知也會被標示為已讀。

特殊檔案
當有些特殊檔案出現在你的版本庫時，GitHub 會注意到它們。

README
第一個就是 README 檔，它可以用任意一種可以被 GitHub 便是成文章的格式寫成。 舉例來說，它可以是
README、README.md、README.asciidoc、等等。 如果 GitHub 在你的原始碼裡發現 README 這個檔案
時，他會被渲染再在專案首頁。

許多團隊用這檔案來整理所有這專案的相關資訊，來讓第一次接觸這個專案或版本庫的人了解這個專案。 通
常會包含這些東西：

• 這個專案的目的
• 如何設定及安裝
• 舉個使用或執行的例子
• 這個專案是基於哪種授權發布的
• 如何對這專案做貢獻

因為 GitHub 會渲染這個檔案，所以你可以嵌入圖片或連結來讓他更容易理解。

CONTRIBUTING
另個 GitHub 會辨識的特殊檔案就是 CONTRIBUTING。 如果你有個帶著任意種附檔名的
CONTRIBUTING，GitHub 會把它顯示成 在有 CONTRIBUTING 這個檔案時建立 Pull Request 給那些想建立
Pull Request 的使用者看。

182

圖表 122. 在有 CONTRIBUTING 這個檔案時建立 Pull Request

這檔案就是你可以指定發給你這專案的 Pull Request 裡面可以包含哪些以及不能包含哪些東西。 這樣大家或
許就會在建立 Pull Request 前看看這些原則了。

專案管理
你在一個專案上通常沒有什麼管理性的事能做，不過這邊有幾個你或許有興趣的專案。

變更主分支

如果你希望使用其他不是「master」的分支來作為其他人建立 Pull Request 的預設目標分支，你可以在版本
庫的設定頁面的「Options」分頁裡設定。

圖表 123. 變更一個專案的預設分支

只要在下拉式清單裡選擇你要的分支，就可以簡單的變更所有主要動作的預設分支，包含其他人在拓製版本
庫時預設簽出的分支。

版本庫移轉

如果你想要把一個專案轉移給其他在 GitHub 上的使用者或是組織時，你可以在倉儲設定裡同樣在
「Options」分頁的底部找到 「Transfer ownership」來達成這件事。

183

圖表 124. 把一個專案轉移給其他的 GitHub 使用者或是組織

這當你要放棄一個專案而有人要接手時很有幫助，或是在你的專案日漸茁壯，你想要把它移到一個組織裡時
也有用。

這個動作不只會把所有關注和標記星號的使用者搬到其他地方，同時也會在舊頁面建立連向新頁面的重導向
連結。 這也會重導向所有來自 Git 的擷取和拓製動作，不只是網頁請求而已。

Managing an organization
 In addition to single-user accounts, GitHub has what are called Organizations. Like personal
accounts, Organizational accounts have a namespace where all their projects exist, but many other
things are different. These accounts represent a group of people with shared ownership of projects,
and there are many tools to manage subgroups of those people. Normally these accounts are used for
Open Source groups (such as “perl” or “rails”) or companies (such as “google” or “twitter”).

Organization Basics
An organization is pretty easy to create; just click on the “+” icon at the top-right of any GitHub page,
and select “New organization” from the menu.

圖表 125. The “New organization” menu item.

First you’ll need to name your organization and provide an email address for a main point of contact
for the group. Then you can invite other users to be co-owners of the account if you want to.

184

Follow these steps and you’ll soon be the owner of a brand-new organization. Like personal
accounts, organizations are free if everything you plan to store there will be open source.

As an owner in an organization, when you fork a repository, you’ll have the choice of forking it to
your organization’s namespace. When you create new repositories you can create them either under
your personal account or under any of the organizations that you are an owner in. You also
automatically “watch” any new repository created under these organizations.

Just like in 你的頭像, you can upload an avatar for your organization to personalize it a bit. Also just
like personal accounts, you have a landing page for the organization that lists all of your repositories
and can be viewed by other people.

Now let’s cover some of the things that are a bit different with an organizational account.

Teams
Organizations are associated with individual people by way of teams, which are simply a grouping of
individual user accounts and repositories within the organization and what kind of access those
people have in those repositories.

For example, say your company has three repositories: frontend, backend, and deployscripts.
You’d want your HTML/CSS/JavaScript developers to have access to frontend and maybe backend,
and your Operations people to have access to backend and deployscripts. Teams make this easy,
without having to manage the collaborators for every individual repository.

The Organization page shows you a simple dashboard of all the repositories, users and teams that are
under this organization.

185

圖表 126. The Organization page.

To manage your Teams, you can click on the Teams sidebar on the right hand side of the page in The
Organization page.. This will bring you to a page you can use to add members to the team, add
repositories to the team or manage the settings and access control levels for the team. Each team can
have read only, read/write or administrative access to the repositories. You can change that level by
clicking the “Settings” button in The Team page..

圖表 127. The Team page.

When you invite someone to a team, they will get an email letting them know they’ve been invited.

Additionally, team @mentions (such as @acmecorp/frontend) work much the same as they do with
individual users, except that all members of the team are then subscribed to the thread. This is useful

186

if you want the attention from someone on a team, but you don’t know exactly who to ask.

A user can belong to any number of teams, so don’t limit yourself to only access-control teams.
Special-interest teams like ux, css, or refactoring are useful for certain kinds of questions, and
others like legal and colorblind for an entirely different kind.

Audit Log
Organizations also give owners access to all the information about what went on under the
organization. You can go to the Audit Log tab and see what events have happened at an organization
level, who did them and where in the world they were done.

圖表 128. The Audit log.

You can also filter down to specific types of events, specific places or specific people.

187

Scripting GitHub
So now we’ve covered all of the major features and workflows of GitHub, but any large group or
project will have customizations they may want to make or external services they may want to
integrate.

Luckily for us, GitHub is really quite hackable in many ways. In this section we’ll cover how to use the
GitHub hooks system and its API to make GitHub work how we want it to.

Hooks
The Hooks and Services section of GitHub repository administration is the easiest way to have GitHub
interact with external systems.

Services

First we’ll take a look at Services. Both the Hooks and Services integrations can be found in the
Settings section of your repository, where we previously looked at adding Collaborators and changing
the default branch of your project. Under the “Webhooks and Services” tab you will see something
like Services and Hooks configuration section..

圖表 129. Services and Hooks configuration section.

There are dozens of services you can choose from, most of them integrations into other commercial
and open source systems. Most of them are for Continuous Integration services, bug and issue
trackers, chat room systems and documentation systems. We’ll walk through setting up a very
simple one, the Email hook. If you choose “email” from the “Add Service” dropdown, you’ll get a
configuration screen like Email service configuration..

188

圖表 130. Email service configuration.

In this case, if we hit the “Add service” button, the email address we specified will get an email every
time someone pushes to the repository. Services can listen for lots of different types of events, but
most only listen for push events and then do something with that data.

If there is a system you are using that you would like to integrate with GitHub, you should check here
to see if there is an existing service integration available. For example, if you’re using Jenkins to run
tests on your codebase, you can enable the Jenkins builtin service integration to kick off a test run
every time someone pushes to your repository.

Hooks

If you need something more specific or you want to integrate with a service or site that is not included
in this list, you can instead use the more generic hooks system. GitHub repository hooks are pretty
simple. You specify a URL and GitHub will post an HTTP payload to that URL on any event you want.

Generally the way this works is you can setup a small web service to listen for a GitHub hook payload
and then do something with the data when it is received.

To enable a hook, you click the “Add webhook” button in Services and Hooks configuration section..
This will bring you to a page that looks like Web hook configuration..

189

圖表 131. Web hook configuration.

The configuration for a web hook is pretty simple. In most cases you simply enter a URL and a secret
key and hit “Add webhook”. There are a few options for which events you want GitHub to send you a
payload for — the default is to only get a payload for the push event, when someone pushes new
code to any branch of your repository.

Let’s see a small example of a web service you may set up to handle a web hook. We’ll use the Ruby
web framework Sinatra since it’s fairly concise and you should be able to easily see what we’re
doing.

Let’s say we want to get an email if a specific person pushes to a specific branch of our project
modifying a specific file. We could fairly easily do that with code like this:

190

require 'sinatra'

require 'json'

require 'mail'

post '/payload' do

 push = JSON.parse(request.body.read) # parse the JSON

 # gather the data we're looking for

 pusher = push["pusher"]["name"]

 branch = push["ref"]

 # get a list of all the files touched

 files = push["commits"].map do |commit|

 commit['added'] + commit['modified'] + commit['removed']

 end

 files = files.flatten.uniq

 # check for our criteria

 if pusher == 'schacon' &&

 branch == 'ref/heads/special-branch' &&

 files.include?('special-file.txt')

 Mail.deliver do

 from 'tchacon@example.com'

 to 'tchacon@example.com'

 subject 'Scott Changed the File'

 body "ALARM"

 end

 end

end

Here we’re taking the JSON payload that GitHub delivers us and looking up who pushed it, what
branch they pushed to and what files were touched in all the commits that were pushed. Then we
check that against our criteria and send an email if it matches.

In order to develop and test something like this, you have a nice developer console in the same screen
where you set the hook up. You can see the last few deliveries that GitHub has tried to make for that
webhook. For each hook you can dig down into when it was delivered, if it was successful and the
body and headers for both the request and the response. This makes it incredibly easy to test and
debug your hooks.

191

圖表 132. Web hook debugging information.

The other great feature of this is that you can redeliver any of the payloads to test your service easily.

For more information on how to write webhooks and all the different event types you can listen for, go
to the GitHub Developer documentation at https://developer.github.com/webhooks/

The GitHub API
 Services and hooks give you a way to receive push notifications about events that happen on your
repositories, but what if you need more information about these events? What if you need to automate
something like adding collaborators or labeling issues?

This is where the GitHub API comes in handy. GitHub has tons of API endpoints for doing nearly
anything you can do on the website in an automated fashion. In this section we’ll learn how to

192

https://developer.github.com/webhooks/

authenticate and connect to the API, how to comment on an issue and how to change the status of a
Pull Request through the API.

Basic Usage
The most basic thing you can do is a simple GET request on an endpoint that doesn’t require
authentication. This could be a user or read-only information on an open source project. For example,
if we want to know more about a user named “schacon”, we can run something like this:

$ curl https://api.github.com/users/schacon

{

 "login": "schacon",

 "id": 70,

 "avatar_url": "https://avatars.githubusercontent.com/u/70",

…

 "name": "Scott Chacon",

 "company": "GitHub",

 "following": 19,

 "created_at": "2008-01-27T17:19:28Z",

 "updated_at": "2014-06-10T02:37:23Z"

}

There are tons of endpoints like this to get information about organizations, projects, issues,
commits — just about anything you can publicly see on GitHub. You can even use the API to render
arbitrary Markdown or find a .gitignore template.

$ curl https://api.github.com/gitignore/templates/Java

{

 "name": "Java",

 "source": "*.class

Mobile Tools for Java (J2ME)

.mtj.tmp/

Package Files

*.jar

*.war

*.ear

virtual machine crash logs, see

http://www.java.com/en/download/help/error_hotspot.xml

hs_err_pid*

"

}

Commenting on an Issue
However, if you want to do an action on the website such as comment on an Issue or Pull Request or if
you want to view or interact with private content, you’ll need to authenticate.

193

There are several ways to authenticate. You can use basic authentication with just your username and
password, but generally it’s a better idea to use a personal access token. You can generate this from
the “Applications” tab of your settings page.

圖表 133. Generate your access token from the “Applications” tab of your settings page.

It will ask you which scopes you want for this token and a description. Make sure to use a good
description so you feel comfortable removing the token when your script or application is no longer
used.

GitHub will only show you the token once, so be sure to copy it. You can now use this to authenticate
in your script instead of using a username and password. This is nice because you can limit the scope
of what you want to do and the token is revocable.

This also has the added advantage of increasing your rate limit. Without authenticating, you will be
limited to 60 requests per hour. If you authenticate you can make up to 5,000 requests per hour.

So let’s use it to make a comment on one of our issues. Let’s say we want to leave a comment on a
specific issue, Issue #6. To do so we have to do an HTTP POST request to
repos/<user>/<repo>/issues/<num>/comments with the token we just generated as an
Authorization header.

194

$ curl -H "Content-Type: application/json" \

 -H "Authorization: token TOKEN" \

 --data '{"body":"A new comment, :+1:"}' \

 https://api.github.com/repos/schacon/blink/issues/6/comments

{

 "id": 58322100,

 "html_url": "https://github.com/schacon/blink/issues/6#issuecomment-

58322100",

 ...

 "user": {

 "login": "tonychacon",

 "id": 7874698,

 "avatar_url": "https://avatars.githubusercontent.com/u/7874698?v=2",

 "type": "User",

 },

 "created_at": "2014-10-08T07:48:19Z",

 "updated_at": "2014-10-08T07:48:19Z",

 "body": "A new comment, :+1:"

}

Now if you go to that issue, you can see the comment that we just successfully posted as in A comment
posted from the GitHub API..

圖表 134. A comment posted from the GitHub API.

You can use the API to do just about anything you can do on the website — creating and setting
milestones, assigning people to Issues and Pull Requests, creating and changing labels, accessing
commit data, creating new commits and branches, opening, closing or merging Pull Requests, creating
and editing teams, commenting on lines of code in a Pull Request, searching the site and on and on.

Changing the Status of a Pull Request
There is one final example we’ll look at since it’s really useful if you’re working with Pull Requests.
Each commit can have one or more statuses associated with it and there is an API to add and query
that status.

Most of the Continuous Integration and testing services make use of this API to react to pushes by
testing the code that was pushed, and then report back if that commit has passed all the tests. You
could also use this to check if the commit message is properly formatted, if the submitter followed all
your contribution guidelines, if the commit was validly signed — any number of things.

Let’s say you set up a webhook on your repository that hits a small web service that checks for a
Signed-off-by string in the commit message.

195

require 'httparty'

require 'sinatra'

require 'json'

post '/payload' do

 push = JSON.parse(request.body.read) # parse the JSON

 repo_name = push['repository']['full_name']

 # look through each commit message

 push["commits"].each do |commit|

 # look for a Signed-off-by string

 if /Signed-off-by/.match commit['message']

 state = 'success'

 description = 'Successfully signed off!'

 else

 state = 'failure'

 description = 'No signoff found.'

 end

 # post status to GitHub

 sha = commit["id"]

 status_url =

"https://api.github.com/repos/#{repo_name}/statuses/#{sha}"

 status = {

 "state" => state,

 "description" => description,

 "target_url" => "http://example.com/how-to-signoff",

 "context" => "validate/signoff"

 }

 HTTParty.post(status_url,

 :body => status.to_json,

 :headers => {

 'Content-Type' => 'application/json',

 'User-Agent' => 'tonychacon/signoff',

 'Authorization' => "token #{ENV['TOKEN']}" }

)

 end

end

Hopefully this is fairly simple to follow. In this web hook handler we look through each commit that
was just pushed, we look for the string Signed-off-by in the commit message and finally we POST via
HTTP to the /repos/<user>/<repo>/statuses/<commit_sha> API endpoint with the status.

In this case you can send a state (success, failure, error), a description of what happened, a target URL
the user can go to for more information and a “context” in case there are multiple statuses for a
single commit. For example, a testing service may provide a status and a validation service like this
may also provide a status — the “context” field is how they’re differentiated.

If someone opens a new Pull Request on GitHub and this hook is set up, you may see something like

196

Commit status via the API..

圖表 135. Commit status via the API.

You can now see a little green check mark next to the commit that has a “Signed-off-by” string in the
message and a red cross through the one where the author forgot to sign off. You can also see that the
Pull Request takes the status of the last commit on the branch and warns you if it is a failure. This is
really useful if you’re using this API for test results so you don’t accidentally merge something
where the last commit is failing tests.

Octokit
Though we’ve been doing nearly everything through curl and simple HTTP requests in these
examples, several open-source libraries exist that make this API available in a more idiomatic way. At
the time of this writing, the supported languages include Go, Objective-C, Ruby, and .NET. Check out
http://github.com/octokit for more information on these, as they handle much of the HTTP for you.

Hopefully these tools can help you customize and modify GitHub to work better for your specific
workflows. For complete documentation on the entire API as well as guides for common tasks, check
out https://developer.github.com.

總結
現在你是個 GitHub 使用者了。 你現在知道如何建立帳號、管理組織、建立及推送變更到倉儲、參與別人的
專案或是接受別人對你專案的變更。 在下個章節，你會學到更加強力的工具及技巧來應對複雜的處境，這會
讓你變成真的 Git 專家。

197

http://github.com/octokit
https://developer.github.com

Git Tools
By now, you’ve learned most of the day-to-day commands and workflows that you need to manage
or maintain a Git repository for your source code control. You’ve accomplished the basic tasks of
tracking and committing files, and you’ve harnessed the power of the staging area and lightweight
topic branching and merging.

Now you’ll explore a number of very powerful things that Git can do that you may not necessarily use
on a day-to-day basis but that you may need at some point.

Revision Selection
Git allows you to specify specific commits or a range of commits in several ways. They aren’t
necessarily obvious but are helpful to know.

Single Revisions
You can obviously refer to a commit by the SHA-1 hash that it’s given, but there are more human-
friendly ways to refer to commits as well. This section outlines the various ways you can refer to a
single commit.

Short SHA-1
Git is smart enough to figure out what commit you meant to type if you provide the first few
characters, as long as your partial SHA-1 is at least four characters long and unambiguous – that is,
only one object in the current repository begins with that partial SHA-1.

For example, to see a specific commit, suppose you run a git log command and identify the commit
where you added certain functionality:

$ git log

commit 734713bc047d87bf7eac9674765ae793478c50d3

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

 fixed refs handling, added gc auto, updated tests

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

 Merge commit 'phedders/rdocs'

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

 added some blame and merge stuff

198

In this case, choose 1c002dd.... If you git show that commit, the following commands are
equivalent (assuming the shorter versions are unambiguous):

$ git show 1c002dd4b536e7479fe34593e72e6c6c1819e53b

$ git show 1c002dd4b536e7479f

$ git show 1c002d

Git can figure out a short, unique abbreviation for your SHA-1 values. If you pass --abbrev-commit to
the git log command, the output will use shorter values but keep them unique; it defaults to using
seven characters but makes them longer if necessary to keep the SHA-1 unambiguous:

$ git log --abbrev-commit --pretty=oneline

ca82a6d changed the version number

085bb3b removed unnecessary test code

a11bef0 first commit

Generally, eight to ten characters are more than enough to be unique within a project.

As an example, the Linux kernel, which is a pretty large project with over 450k commits and 3.6 million
objects, has no two objects whose SHA-1s overlap more than the first 11 characters.

筆記

A SHORT NOTE ABOUT SHA-1
A lot of people become concerned at some point that they will, by random
happenstance, have two objects in their repository that hash to the same SHA-1 value.
What then?

If you do happen to commit an object that hashes to the same SHA-1 value as a previous
object in your repository, Git will see the previous object already in your Git database
and assume it was already written. If you try to check out that object again at some
point, you’ll always get the data of the first object.

However, you should be aware of how ridiculously unlikely this scenario is. The SHA-1
digest is 20 bytes or 160 bits. The number of randomly hashed objects needed to ensure
a 50% probability of a single collision is about 280 (the formula for determining collision
probability is p = (n(n-1)/2) * (1/2^160)). 280 is 1.2 x 1024 or 1 million billion
billion. That’s 1,200 times the number of grains of sand on the earth.

Here’s an example to give you an idea of what it would take to get a SHA-1 collision. If
all 6.5 billion humans on Earth were programming, and every second, each one was
producing code that was the equivalent of the entire Linux kernel history (3.6 million Git
objects) and pushing it into one enormous Git repository, it would take roughly 2 years
until that repository contained enough objects to have a 50% probability of a single
SHA-1 object collision. A higher probability exists that every member of your
programming team will be attacked and killed by wolves in unrelated incidents on the
same night.

199

Branch References
The most straightforward way to specify a commit requires that it has a branch reference pointed at it.
Then, you can use a branch name in any Git command that expects a commit object or SHA-1 value.
For instance, if you want to show the last commit object on a branch, the following commands are
equivalent, assuming that the topic1 branch points to ca82a6d:

$ git show ca82a6dff817ec66f44342007202690a93763949

$ git show topic1

If you want to see which specific SHA-1 a branch points to, or if you want to see what any of these
examples boils down to in terms of SHA-1s, you can use a Git plumbing tool called rev-parse. You
can see Git Internals for more information about plumbing tools; basically, rev-parse exists for
lower-level operations and isn’t designed to be used in day-to-day operations. However, it can be
helpful sometimes when you need to see what’s really going on. Here you can run rev-parse on
your branch.

$ git rev-parse topic1

ca82a6dff817ec66f44342007202690a93763949

RefLog Shortnames
One of the things Git does in the background while you’re working away is keep a “reflog” – a log
of where your HEAD and branch references have been for the last few months.

You can see your reflog by using git reflog:

$ git reflog

734713b HEAD@{0}: commit: fixed refs handling, added gc auto, updated

d921970 HEAD@{1}: merge phedders/rdocs: Merge made by recursive.

1c002dd HEAD@{2}: commit: added some blame and merge stuff

1c36188 HEAD@{3}: rebase -i (squash): updating HEAD

95df984 HEAD@{4}: commit: # This is a combination of two commits.

1c36188 HEAD@{5}: rebase -i (squash): updating HEAD

7e05da5 HEAD@{6}: rebase -i (pick): updating HEAD

Every time your branch tip is updated for any reason, Git stores that information for you in this
temporary history. And you can specify older commits with this data, as well. If you want to see the
fifth prior value of the HEAD of your repository, you can use the @{n} reference that you see in the
reflog output:

$ git show HEAD@{5}

You can also use this syntax to see where a branch was some specific amount of time ago. For
instance, to see where your master branch was yesterday, you can type

200

$ git show master@{yesterday}

That shows you where the branch tip was yesterday. This technique only works for data that’s still in
your reflog, so you can’t use it to look for commits older than a few months.

To see reflog information formatted like the git log output, you can run git log -g:

$ git log -g master

commit 734713bc047d87bf7eac9674765ae793478c50d3

Reflog: master@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: commit: fixed refs handling, added gc auto, updated

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Jan 2 18:32:33 2009 -0800

 fixed refs handling, added gc auto, updated tests

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Reflog: master@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: merge phedders/rdocs: Merge made by recursive.

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

 Merge commit 'phedders/rdocs'

It’s important to note that the reflog information is strictly local – it’s a log of what you’ve done in
your repository. The references won’t be the same on someone else’s copy of the repository; and
right after you initially clone a repository, you’ll have an empty reflog, as no activity has occurred yet
in your repository. Running git show HEAD@{2.months.ago} will work only if you cloned the
project at least two months ago – if you cloned it five minutes ago, you’ll get no results.

Ancestry References
The other main way to specify a commit is via its ancestry. If you place a ^ at the end of a reference, Git
resolves it to mean the parent of that commit. Suppose you look at the history of your project:

$ git log --pretty=format:'%h %s' --graph

* 734713b fixed refs handling, added gc auto, updated tests

* d921970 Merge commit 'phedders/rdocs'

|\

| * 35cfb2b Some rdoc changes

* | 1c002dd added some blame and merge stuff

|/

* 1c36188 ignore *.gem

* 9b29157 add open3_detach to gemspec file list

Then, you can see the previous commit by specifying HEAD^, which means “the parent of HEAD”:

201

$ git show HEAD^

commit d921970aadf03b3cf0e71becdaab3147ba71cdef

Merge: 1c002dd... 35cfb2b...

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 15:08:43 2008 -0800

 Merge commit 'phedders/rdocs'

You can also specify a number after the ^ – for example, d921970^2 means “the second parent of
d921970.” This syntax is only useful for merge commits, which have more than one parent. The first
parent is the branch you were on when you merged, and the second is the commit on the branch that
you merged in:

$ git show d921970^

commit 1c002dd4b536e7479fe34593e72e6c6c1819e53b

Author: Scott Chacon <schacon@gmail.com>

Date: Thu Dec 11 14:58:32 2008 -0800

 added some blame and merge stuff

$ git show d921970^2

commit 35cfb2b795a55793d7cc56a6cc2060b4bb732548

Author: Paul Hedderly <paul+git@mjr.org>

Date: Wed Dec 10 22:22:03 2008 +0000

 Some rdoc changes

The other main ancestry specification is the ~. This also refers to the first parent, so HEAD~ and HEAD^
are equivalent. The difference becomes apparent when you specify a number. HEAD~2 means “the
first parent of the first parent,” or “the grandparent” – it traverses the first parents the number of
times you specify. For example, in the history listed earlier, HEAD~3 would be

$ git show HEAD~3

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

 ignore *.gem

This can also be written HEAD^^^, which again is the first parent of the first parent of the first parent:

202

$ git show HEAD^^^

commit 1c3618887afb5fbcbea25b7c013f4e2114448b8d

Author: Tom Preston-Werner <tom@mojombo.com>

Date: Fri Nov 7 13:47:59 2008 -0500

 ignore *.gem

You can also combine these syntaxes – you can get the second parent of the previous reference
(assuming it was a merge commit) by using HEAD~3^2, and so on.

Commit Ranges
Now that you can specify individual commits, let’s see how to specify ranges of commits. This is
particularly useful for managing your branches – if you have a lot of branches, you can use range
specifications to answer questions such as, “What work is on this branch that I haven’t yet merged
into my main branch?”

Double Dot

The most common range specification is the double-dot syntax. This basically asks Git to resolve a
range of commits that are reachable from one commit but aren’t reachable from another. For
example, say you have a commit history that looks like Example history for range selection..

圖表 136. Example history for range selection.

You want to see what is in your experiment branch that hasn’t yet been merged into your master
branch. You can ask Git to show you a log of just those commits with master..experiment – that
means “all commits reachable by experiment that aren’t reachable by master.” For the sake of
brevity and clarity in these examples, I’ll use the letters of the commit objects from the diagram in
place of the actual log output in the order that they would display:

$ git log master..experiment

D

C

If, on the other hand, you want to see the opposite – all commits in master that aren’t in
experiment – you can reverse the branch names. experiment..master shows you everything in
master not reachable from experiment:

203

$ git log experiment..master

F

E

This is useful if you want to keep the experiment branch up to date and preview what you’re about
to merge in. Another very frequent use of this syntax is to see what you’re about to push to a remote:

$ git log origin/master..HEAD

This command shows you any commits in your current branch that aren’t in the master branch on
your origin remote. If you run a git push and your current branch is tracking origin/master, the
commits listed by git log origin/master..HEAD are the commits that will be transferred to the
server. You can also leave off one side of the syntax to have Git assume HEAD. For example, you can get
the same results as in the previous example by typing git log origin/master.. – Git substitutes
HEAD if one side is missing.

Multiple Points

The double-dot syntax is useful as a shorthand; but perhaps you want to specify more than two
branches to indicate your revision, such as seeing what commits are in any of several branches that
aren’t in the branch you’re currently on. Git allows you to do this by using either the ^ character or
--not before any reference from which you don’t want to see reachable commits. Thus these three
commands are equivalent:

$ git log refA..refB

$ git log ^refA refB

$ git log refB --not refA

This is nice because with this syntax you can specify more than two references in your query, which
you cannot do with the double-dot syntax. For instance, if you want to see all commits that are
reachable from refA or refB but not from refC, you can type one of these:

$ git log refA refB ^refC

$ git log refA refB --not refC

This makes for a very powerful revision query system that should help you figure out what is in your
branches.

Triple Dot

The last major range-selection syntax is the triple-dot syntax, which specifies all the commits that are
reachable by either of two references but not by both of them. Look back at the example commit
history in Example history for range selection.. If you want to see what is in master or experiment but
not any common references, you can run

204

$ git log master...experiment

F

E

D

C

Again, this gives you normal log output but shows you only the commit information for those four
commits, appearing in the traditional commit date ordering.

A common switch to use with the log command in this case is --left-right, which shows you
which side of the range each commit is in. This helps make the data more useful:

$ git log --left-right master...experiment

< F

< E

> D

> C

With these tools, you can much more easily let Git know what commit or commits you want to inspect.

Interactive Staging
Git comes with a couple of scripts that make some command-line tasks easier. Here, you’ll look at a
few interactive commands that can help you easily craft your commits to include only certain
combinations and parts of files. These tools are very helpful if you modify a bunch of files and then
decide that you want those changes to be in several focused commits rather than one big messy
commit. This way, you can make sure your commits are logically separate changesets and can be
easily reviewed by the developers working with you. If you run git add with the -i or
--interactive option, Git goes into an interactive shell mode, displaying something like this:

$ git add -i

 staged unstaged path

 1: unchanged +0/-1 TODO

 2: unchanged +1/-1 index.html

 3: unchanged +5/-1 lib/simplegit.rb

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

What now>

You can see that this command shows you a much different view of your staging area – basically the
same information you get with git status but a bit more succinct and informative. It lists the
changes you’ve staged on the left and unstaged changes on the right.

After this comes a Commands section. Here you can do a number of things, including staging files,
unstaging files, staging parts of files, adding untracked files, and seeing diffs of what has been staged.

205

Staging and Unstaging Files
If you type 2 or u at the What now> prompt, the script prompts you for which files you want to stage:

What now> 2

 staged unstaged path

 1: unchanged +0/-1 TODO

 2: unchanged +1/-1 index.html

 3: unchanged +5/-1 lib/simplegit.rb

Update>>

To stage the TODO and index.html files, you can type the numbers:

Update>> 1,2

 staged unstaged path

* 1: unchanged +0/-1 TODO

* 2: unchanged +1/-1 index.html

 3: unchanged +5/-1 lib/simplegit.rb

Update>>

The * next to each file means the file is selected to be staged. If you press Enter after typing nothing at
the Update>> prompt, Git takes anything selected and stages it for you:

Update>>

updated 2 paths

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

What now> 1

 staged unstaged path

 1: +0/-1 nothing TODO

 2: +1/-1 nothing index.html

 3: unchanged +5/-1 lib/simplegit.rb

Now you can see that the TODO and index.html files are staged and the simplegit.rb file is still
unstaged. If you want to unstage the TODO file at this point, you use the 3 or r (for revert) option:

206

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

What now> 3

 staged unstaged path

 1: +0/-1 nothing TODO

 2: +1/-1 nothing index.html

 3: unchanged +5/-1 lib/simplegit.rb

Revert>> 1

 staged unstaged path

* 1: +0/-1 nothing TODO

 2: +1/-1 nothing index.html

 3: unchanged +5/-1 lib/simplegit.rb

Revert>> [enter]

reverted one path

Looking at your Git status again, you can see that you’ve unstaged the TODO file:

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

What now> 1

 staged unstaged path

 1: unchanged +0/-1 TODO

 2: +1/-1 nothing index.html

 3: unchanged +5/-1 lib/simplegit.rb

To see the diff of what you’ve staged, you can use the 6 or d (for diff) command. It shows you a list of
your staged files, and you can select the ones for which you would like to see the staged diff. This is
much like specifying git diff --cached on the command line:

207

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

What now> 6

 staged unstaged path

 1: +1/-1 nothing index.html

Review diff>> 1

diff --git a/index.html b/index.html

index 4d07108..4335f49 100644

--- a/index.html

+++ b/index.html

@@ -16,7 +16,7 @@ Date Finder

 <p id="out">...</p>

-<div id="footer">contact : support@github.com</div>

+<div id="footer">contact : email.support@github.com</div>

 <script type="text/javascript">

With these basic commands, you can use the interactive add mode to deal with your staging area a
little more easily.

Staging Patches
It’s also possible for Git to stage certain parts of files and not the rest. For example, if you make two
changes to your simplegit.rb file and want to stage one of them and not the other, doing so is very easy
in Git. From the interactive prompt, type 5 or p (for patch). Git will ask you which files you would like to
partially stage; then, for each section of the selected files, it will display hunks of the file diff and ask if
you would like to stage them, one by one:

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index dd5ecc4..57399e0 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -22,7 +22,7 @@ class SimpleGit

 end

 def log(treeish = 'master')

- command("git log -n 25 #{treeish}")

+ command("git log -n 30 #{treeish}")

 end

 def blame(path)

Stage this hunk [y,n,a,d,/,j,J,g,e,?]?

You have a lot of options at this point. Typing ? shows a list of what you can do:

208

Stage this hunk [y,n,a,d,/,j,J,g,e,?]? ?

y - stage this hunk

n - do not stage this hunk

a - stage this and all the remaining hunks in the file

d - do not stage this hunk nor any of the remaining hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

Generally, you’ll type y or n if you want to stage each hunk, but staging all of them in certain files or
skipping a hunk decision until later can be helpful too. If you stage one part of the file and leave
another part unstaged, your status output will look like this:

What now> 1

 staged unstaged path

 1: unchanged +0/-1 TODO

 2: +1/-1 nothing index.html

 3: +1/-1 +4/-0 lib/simplegit.rb

The status of the simplegit.rb file is interesting. It shows you that a couple of lines are staged and a
couple are unstaged. You’ve partially staged this file. At this point, you can exit the interactive adding
script and run git commit to commit the partially staged files.

You also don’t need to be in interactive add mode to do the partial-file staging – you can start the
same script by using git add -p or git add --patch on the command line.

Furthermore, you can use patch mode for partially resetting files with the reset --patch command,
for checking out parts of files with the checkout --patch command and for stashing parts of files
with the stash save --patch command. We’ll go into more details on each of these as we get to
more advanced usages of these commands.

Stashing and Cleaning
Often, when you’ve been working on part of your project, things are in a messy state and you want to
switch branches for a bit to work on something else. The problem is, you don’t want to do a commit
of half-done work just so you can get back to this point later. The answer to this issue is the git
stash command.

Stashing takes the dirty state of your working directory – that is, your modified tracked files and staged
changes – and saves it on a stack of unfinished changes that you can reapply at any time.

209

Stashing Your Work
To demonstrate, you’ll go into your project and start working on a couple of files and possibly stage
one of the changes. If you run git status, you can see your dirty state:

$ git status

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: index.html

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: lib/simplegit.rb

Now you want to switch branches, but you don’t want to commit what you’ve been working on yet;
so you’ll stash the changes. To push a new stash onto your stack, run git stash or git stash
save:

$ git stash

Saved working directory and index state \

 "WIP on master: 049d078 added the index file"

HEAD is now at 049d078 added the index file

(To restore them type "git stash apply")

Your working directory is clean:

$ git status

On branch master

nothing to commit, working directory clean

At this point, you can easily switch branches and do work elsewhere; your changes are stored on your
stack. To see which stashes you’ve stored, you can use git stash list:

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051 Revert "added file_size"

stash@{2}: WIP on master: 21d80a5 added number to log

In this case, two stashes were done previously, so you have access to three different stashed works.
You can reapply the one you just stashed by using the command shown in the help output of the
original stash command: git stash apply. If you want to apply one of the older stashes, you can
specify it by naming it, like this: git stash apply stash@{2}. If you don’t specify a stash, Git

210

assumes the most recent stash and tries to apply it:

$ git stash apply

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: index.html

 modified: lib/simplegit.rb

no changes added to commit (use "git add" and/or "git commit -a")

You can see that Git re-modifies the files you reverted when you saved the stash. In this case, you had a
clean working directory when you tried to apply the stash, and you tried to apply it on the same
branch you saved it from; but having a clean working directory and applying it on the same branch
aren’t necessary to successfully apply a stash. You can save a stash on one branch, switch to another
branch later, and try to reapply the changes. You can also have modified and uncommitted files in your
working directory when you apply a stash – Git gives you merge conflicts if anything no longer applies
cleanly.

The changes to your files were reapplied, but the file you staged before wasn’t restaged. To do that,
you must run the git stash apply command with a --index option to tell the command to try to
reapply the staged changes. If you had run that instead, you’d have gotten back to your original
position:

$ git stash apply --index

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: index.html

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: lib/simplegit.rb

The apply option only tries to apply the stashed work – you continue to have it on your stack. To
remove it, you can run git stash drop with the name of the stash to remove:

211

$ git stash list

stash@{0}: WIP on master: 049d078 added the index file

stash@{1}: WIP on master: c264051 Revert "added file_size"

stash@{2}: WIP on master: 21d80a5 added number to log

$ git stash drop stash@{0}

Dropped stash@{0} (364e91f3f268f0900bc3ee613f9f733e82aaed43)

You can also run git stash pop to apply the stash and then immediately drop it from your stack.

Creative Stashing
There are a few stash variants that may also be helpful. The first option that is quite popular is the
--keep-index option to the stash save command. This tells Git to not stash anything that you’ve
already staged with the git add command.

This can be really helpful if you’ve made a number of changes but want to only commit some of
them and then come back to the rest of the changes at a later time.

$ git status -s

M index.html

 M lib/simplegit.rb

$ git stash --keep-index

Saved working directory and index state WIP on master: 1b65b17 added the

index file

HEAD is now at 1b65b17 added the index file

$ git status -s

M index.html

Another common thing you may want to do with stash is to stash the untracked files as well as the
tracked ones. By default, git stash will only store files that are already in the index. If you specify
--include-untracked or -u, Git will also stash any untracked files you have created.

$ git status -s

M index.html

 M lib/simplegit.rb

?? new-file.txt

$ git stash -u

Saved working directory and index state WIP on master: 1b65b17 added the

index file

HEAD is now at 1b65b17 added the index file

$ git status -s

$

Finally, if you specify the --patch flag, Git will not stash everything that is modified but will instead

212

prompt you interactively which of the changes you would like to stash and which you would like to
keep in your working directory.

$ git stash --patch

diff --git a/lib/simplegit.rb b/lib/simplegit.rb

index 66d332e..8bb5674 100644

--- a/lib/simplegit.rb

+++ b/lib/simplegit.rb

@@ -16,6 +16,10 @@ class SimpleGit

 return `#{git_cmd} 2>&1`.chomp

 end

 end

+

+ def show(treeish = 'master')

+ command("git show #{treeish}")

+ end

 end

 test

Stash this hunk [y,n,q,a,d,/,e,?]? y

Saved working directory and index state WIP on master: 1b65b17 added the

index file

Creating a Branch from a Stash
If you stash some work, leave it there for a while, and continue on the branch from which you stashed
the work, you may have a problem reapplying the work. If the apply tries to modify a file that you’ve
since modified, you’ll get a merge conflict and will have to try to resolve it. If you want an easier way
to test the stashed changes again, you can run git stash branch, which creates a new branch for
you, checks out the commit you were on when you stashed your work, reapplies your work there, and
then drops the stash if it applies successfully:

213

$ git stash branch testchanges

M index.html

M lib/simplegit.rb

Switched to a new branch 'testchanges'

On branch testchanges

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: index.html

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: lib/simplegit.rb

Dropped refs/stash@{0} (29d385a81d163dfd45a452a2ce816487a6b8b014)

This is a nice shortcut to recover stashed work easily and work on it in a new branch.

Cleaning your Working Directory
Finally, you may not want to stash some work or files in your working directory, but simply get rid of
them. The git clean command will do this for you.

Some common reasons for this might be to remove cruft that has been generated by merges or
external tools or to remove build artifacts in order to run a clean build.

You’ll want to be pretty careful with this command, since it’s designed to remove files from your
working directory that are not tracked. If you change your mind, there is often no retrieving the
content of those files. A safer option is to run git stash --all to remove everything but save it in a
stash.

Assuming you do want to remove cruft files or clean your working directory, you can do so with git
clean. To remove all the untracked files in your working directory, you can run git clean -f -d,
which removes any files and also any subdirectories that become empty as a result. The -f means
force or "really do this".

If you ever want to see what it would do, you can run the command with the -n option, which means
“do a dry run and tell me what you would have removed”.

$ git clean -d -n

Would remove test.o

Would remove tmp/

By default, the git clean command will only remove untracked files that are not ignored. Any file
that matches a pattern in your .gitignore or other ignore files will not be removed. If you want to
remove those files too, such as to remove all .o files generated from a build so you can do a fully clean

214

build, you can add a -x to the clean command.

$ git status -s

 M lib/simplegit.rb

?? build.TMP

?? tmp/

$ git clean -n -d

Would remove build.TMP

Would remove tmp/

$ git clean -n -d -x

Would remove build.TMP

Would remove test.o

Would remove tmp/

If you don’t know what the git clean command is going to do, always run it with a -n first to
double check before changing the -n to a -f and doing it for real. The other way you can be careful
about the process is to run it with the -i or “interactive” flag.

This will run the clean command in an interactive mode.

$ git clean -x -i

Would remove the following items:

 build.TMP test.o

*** Commands ***

 1: clean 2: filter by pattern 3: select by numbers

4: ask each 5: quit

 6: help

What now>

This way you can step through each file individually or specify patterns for deletion interactively.

Signing Your Work
Git is cryptographically secure, but it’s not foolproof. If you’re taking work from others on the
internet and want to verify that commits are actually from a trusted source, Git has a few ways to sign
and verify work using GPG.

GPG Introduction
First of all, if you want to sign anything you need to get GPG configured and your personal key
installed.

215

$ gpg --list-keys

/Users/schacon/.gnupg/pubring.gpg

pub 2048R/0A46826A 2014-06-04

uid Scott Chacon (Git signing key) <schacon@gmail.com>

sub 2048R/874529A9 2014-06-04

If you don’t have a key installed, you can generate one with gpg --gen-key.

gpg --gen-key

Once you have a private key to sign with, you can configure Git to use it for signing things by setting
the user.signingkey config setting.

git config --global user.signingkey 0A46826A

Now Git will use your key by default to sign tags and commits if you want.

Signing Tags
If you have a GPG private key setup, you can now use it to sign new tags. All you have to do is use -s
instead of -a:

$ git tag -s v1.5 -m 'my signed 1.5 tag'

You need a passphrase to unlock the secret key for

user: "Ben Straub <ben@straub.cc>"

2048-bit RSA key, ID 800430EB, created 2014-05-04

If you run git show on that tag, you can see your GPG signature attached to it:

216

$ git show v1.5

tag v1.5

Tagger: Ben Straub <ben@straub.cc>

Date: Sat May 3 20:29:41 2014 -0700

my signed 1.5 tag

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1

iQEcBAABAgAGBQJTZbQlAAoJEF0+sviABDDrZbQH/09PfE51KPVPlanr6q1v4/Ut

LQxfojUWiLQdg2ESJItkcuweYg+kc3HCyFejeDIBw9dpXt00rY26p05qrpnG+85b

hM1/PswpPLuBSr+oCIDj5GMC2r2iEKsfv2fJbNW8iWAXVLoWZRF8B0MfqX/YTMbm

ecorc4iXzQu7tupRihslbNkfvfciMnSDeSvzCpWAHl7h8Wj6hhqePmLm9lAYqnKp

8S5B/1SSQuEAjRZgI4IexpZoeKGVDptPHxLLS38fozsyi0QyDyzEgJxcJQVMXxVi

RUysgqjcpT8+iQM1PblGfHR4XAhuOqN5Fx06PSaFZhqvWFezJ28/CLyX5q+oIVk=

=EFTF

-----END PGP SIGNATURE-----

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

Verifying Tags
To verify a signed tag, you use git tag -v [tag-name]. This command uses GPG to verify the
signature. You need the signer’s public key in your keyring for this to work properly:

$ git tag -v v1.4.2.1

object 883653babd8ee7ea23e6a5c392bb739348b1eb61

type commit

tag v1.4.2.1

tagger Junio C Hamano <junkio@cox.net> 1158138501 -0700

GIT 1.4.2.1

Minor fixes since 1.4.2, including git-mv and git-http with alternates.

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID

F3119B9A

gpg: Good signature from "Junio C Hamano <junkio@cox.net>"

gpg: aka "[jpeg image of size 1513]"

Primary key fingerprint: 3565 2A26 2040 E066 C9A7 4A7D C0C6 D9A4 F311

9B9A

If you don’t have the signer’s public key, you get something like this instead:

217

gpg: Signature made Wed Sep 13 02:08:25 2006 PDT using DSA key ID

F3119B9A

gpg: Can't check signature: public key not found

error: could not verify the tag 'v1.4.2.1'

Signing Commits
In more recent versions of Git (v1.7.9 and above), you can now also sign individual commits. If you’re
interested in signing commits directly instead of just the tags, all you need to do is add a -S to your
git commit command.

$ git commit -a -S -m 'signed commit'

You need a passphrase to unlock the secret key for

user: "Scott Chacon (Git signing key) <schacon@gmail.com>"

2048-bit RSA key, ID 0A46826A, created 2014-06-04

[master 5c3386c] signed commit

 4 files changed, 4 insertions(+), 24 deletions(-)

 rewrite Rakefile (100%)

 create mode 100644 lib/git.rb

To see and verify these signatures, there is also a --show-signature option to git log.

$ git log --show-signature -1

commit 5c3386cf54bba0a33a32da706aa52bc0155503c2

gpg: Signature made Wed Jun 4 19:49:17 2014 PDT using RSA key ID

0A46826A

gpg: Good signature from "Scott Chacon (Git signing key)

<schacon@gmail.com>"

Author: Scott Chacon <schacon@gmail.com>

Date: Wed Jun 4 19:49:17 2014 -0700

 signed commit

Additionally, you can configure git log to check any signatures it finds and list them in its output
with the %G? format.

$ git log --pretty="format:%h %G? %aN %s"

5c3386c G Scott Chacon signed commit

ca82a6d N Scott Chacon changed the version number

085bb3b N Scott Chacon removed unnecessary test code

a11bef0 N Scott Chacon first commit

Here we can see that only the latest commit is signed and valid and the previous commits are not.

218

In Git 1.8.3 and later, "git merge" and "git pull" can be told to inspect and reject when merging a
commit that does not carry a trusted GPG signature with the --verify-signatures command.

If you use this option when merging a branch and it contains commits that are not signed and valid,
the merge will not work.

$ git merge --verify-signatures non-verify

fatal: Commit ab06180 does not have a GPG signature.

If the merge contains only valid signed commits, the merge command will show you all the signatures
it has checked and then move forward with the merge.

$ git merge --verify-signatures signed-branch

Commit 13ad65e has a good GPG signature by Scott Chacon (Git signing

key) <schacon@gmail.com>

Updating 5c3386c..13ad65e

Fast-forward

 README | 2 ++

 1 file changed, 2 insertions(+)

You can also use the -S option with the git merge command itself to sign the resulting merge
commit itself. The following example both verifies that every commit in the branch to be merged is
signed and furthermore signs the resulting merge commit.

$ git merge --verify-signatures -S signed-branch

Commit 13ad65e has a good GPG signature by Scott Chacon (Git signing

key) <schacon@gmail.com>

You need a passphrase to unlock the secret key for

user: "Scott Chacon (Git signing key) <schacon@gmail.com>"

2048-bit RSA key, ID 0A46826A, created 2014-06-04

Merge made by the 'recursive' strategy.

 README | 2 ++

 1 file changed, 2 insertions(+)

Everyone Must Sign
Signing tags and commits is great, but if you decide to use this in your normal workflow, you’ll have
to make sure that everyone on your team understands how to do so. If you don’t, you’ll end up
spending a lot of time helping people figure out how to rewrite their commits with signed versions.
Make sure you understand GPG and the benefits of signing things before adopting this as part of your
standard workflow.

Searching
With just about any size codebase, you’ll often need to find where a function is called or defined, or
find the history of a method. Git provides a couple of useful tools for looking through the code and

219

commits stored in its database quickly and easily. We’ll go through a few of them.

Git Grep
Git ships with a command called grep that allows you to easily search through any committed tree or
the working directory for a string or regular expression. For these examples, we’ll look through the
Git source code itself.

By default, it will look through the files in your working directory. You can pass -n to print out the line
numbers where Git has found matches.

$ git grep -n gmtime_r

compat/gmtime.c:3:#undef gmtime_r

compat/gmtime.c:8: return git_gmtime_r(timep, &result);

compat/gmtime.c:11:struct tm *git_gmtime_r(const time_t *timep, struct

tm *result)

compat/gmtime.c:16: ret = gmtime_r(timep, result);

compat/mingw.c:606:struct tm *gmtime_r(const time_t *timep, struct tm

*result)

compat/mingw.h:162:struct tm *gmtime_r(const time_t *timep, struct tm

*result);

date.c:429: if (gmtime_r(&now, &now_tm))

date.c:492: if (gmtime_r(&time, tm)) {

git-compat-util.h:721:struct tm *git_gmtime_r(const time_t *, struct tm

*);

git-compat-util.h:723:#define gmtime_r git_gmtime_r

There are a number of interesting options you can provide the grep command.

For instance, instead of the previous call, you can have Git summarize the output by just showing you
which files matched and how many matches there were in each file with the --count option:

$ git grep --count gmtime_r

compat/gmtime.c:4

compat/mingw.c:1

compat/mingw.h:1

date.c:2

git-compat-util.h:2

If you want to see what method or function it thinks it has found a match in, you can pass -p:

$ git grep -p gmtime_r *.c

date.c=static int match_multi_number(unsigned long num, char c, const

char *date, char *end, struct tm *tm)

date.c: if (gmtime_r(&now, &now_tm))

date.c=static int match_digit(const char *date, struct tm *tm, int

*offset, int *tm_gmt)

date.c: if (gmtime_r(&time, tm)) {

220

So here we can see that gmtime_r is called in the match_multi_number and match_digit functions
in the date.c file.

You can also look for complex combinations of strings with the --and flag, which makes sure that
multiple matches are in the same line. For instance, let’s look for any lines that define a constant
with either the strings “LINK” or “BUF_MAX” in them in the Git codebase in an older 1.8.0 version.

Here we’ll also use the --break and --heading options which help split up the output into a more
readable format.

$ git grep --break --heading \

 -n -e '#define' --and \(-e LINK -e BUF_MAX \) v1.8.0

v1.8.0:builtin/index-pack.c

62:#define FLAG_LINK (1u<<20)

v1.8.0:cache.h

73:#define S_IFGITLINK 0160000

74:#define S_ISGITLINK(m) (((m) & S_IFMT) == S_IFGITLINK)

v1.8.0:environment.c

54:#define OBJECT_CREATION_MODE OBJECT_CREATION_USES_HARDLINKS

v1.8.0:strbuf.c

326:#define STRBUF_MAXLINK (2*PATH_MAX)

v1.8.0:symlinks.c

53:#define FL_SYMLINK (1 << 2)

v1.8.0:zlib.c

30:/* #define ZLIB_BUF_MAX ((uInt)-1) */

31:#define ZLIB_BUF_MAX ((uInt) 1024 * 1024 * 1024) /* 1GB */

The git grep command has a few advantages over normal searching commands like grep and ack.
The first is that it’s really fast, the second is that you can search through any tree in Git, not just the
working directory. As we saw in the above example, we looked for terms in an older version of the Git
source code, not the version that was currently checked out.

Git Log Searching
Perhaps you’re looking not for where a term exists, but when it existed or was introduced. The git
log command has a number of powerful tools for finding specific commits by the content of their
messages or even the content of the diff they introduce.

If we want to find out for example when the ZLIB_BUF_MAX constant was originally introduced, we
can tell Git to only show us the commits that either added or removed that string with the -S option.

$ git log -SZLIB_BUF_MAX --oneline

e01503b zlib: allow feeding more than 4GB in one go

ef49a7a zlib: zlib can only process 4GB at a time

221

If we look at the diff of those commits we can see that in ef49a7a the constant was introduced and in
e01503b it was modified.

If you need to be more specific, you can provide a regular expression to search for with the -G option.

Line Log Search

Another fairly advanced log search that is insanely useful is the line history search. This is a fairly
recent addition and not very well known, but it can be really helpful. It is called with the -L option to
git log and will show you the history of a function or line of code in your codebase.

For example, if we wanted to see every change made to the function git_deflate_bound in the
zlib.c file, we could run git log -L :git_deflate_bound:zlib.c. This will try to figure out
what the bounds of that function are and then look through the history and show us every change that
was made to the function as a series of patches back to when the function was first created.

$ git log -L :git_deflate_bound:zlib.c

commit ef49a7a0126d64359c974b4b3b71d7ad42ee3bca

Author: Junio C Hamano <gitster@pobox.com>

Date: Fri Jun 10 11:52:15 2011 -0700

 zlib: zlib can only process 4GB at a time

diff --git a/zlib.c b/zlib.c

--- a/zlib.c

+++ b/zlib.c

@@ -85,5 +130,5 @@

-unsigned long git_deflate_bound(z_streamp strm, unsigned long size)

+unsigned long git_deflate_bound(git_zstream *strm, unsigned long size)

 {

- return deflateBound(strm, size);

+ return deflateBound(&strm->z, size);

 }

commit 225a6f1068f71723a910e8565db4e252b3ca21fa

Author: Junio C Hamano <gitster@pobox.com>

Date: Fri Jun 10 11:18:17 2011 -0700

 zlib: wrap deflateBound() too

diff --git a/zlib.c b/zlib.c

--- a/zlib.c

+++ b/zlib.c

@@ -81,0 +85,5 @@

+unsigned long git_deflate_bound(z_streamp strm, unsigned long size)

+{

+ return deflateBound(strm, size);

+}

+

222

If Git can’t figure out how to match a function or method in your programming language, you can
also provide it a regex. For example, this would have done the same thing: git log -L '/unsigned
long git_deflate_bound/',/^}/:zlib.c. You could also give it a range of lines or a single line
number and you’ll get the same sort of output.

Rewriting History
Many times, when working with Git, you may want to revise your commit history for some reason. One
of the great things about Git is that it allows you to make decisions at the last possible moment. You
can decide what files go into which commits right before you commit with the staging area, you can
decide that you didn’t mean to be working on something yet with the stash command, and you can
rewrite commits that already happened so they look like they happened in a different way. This can
involve changing the order of the commits, changing messages or modifying files in a commit,
squashing together or splitting apart commits, or removing commits entirely – all before you share
your work with others.

In this section, you’ll cover how to accomplish these very useful tasks so that you can make your
commit history look the way you want before you share it with others.

Changing the Last Commit
Changing your last commit is probably the most common rewriting of history that you’ll do. You’ll
often want to do two basic things to your last commit: change the commit message, or change the
snapshot you just recorded by adding, changing and removing files.

If you only want to modify your last commit message, it’s very simple:

$ git commit --amend

That drops you into your text editor, which has your last commit message in it, ready for you to modify
the message. When you save and close the editor, the editor writes a new commit containing that
message and makes it your new last commit.

If you’ve committed and then you want to change the snapshot you committed by adding or
changing files, possibly because you forgot to add a newly created file when you originally committed,
the process works basically the same way. You stage the changes you want by editing a file and
running git add on it or git rm to a tracked file, and the subsequent git commit --amend takes
your current staging area and makes it the snapshot for the new commit.

You need to be careful with this technique because amending changes the SHA-1 of the commit. It’s
like a very small rebase – don’t amend your last commit if you’ve already pushed it.

Changing Multiple Commit Messages
To modify a commit that is farther back in your history, you must move to more complex tools. Git
doesn’t have a modify-history tool, but you can use the rebase tool to rebase a series of commits
onto the HEAD they were originally based on instead of moving them to another one. With the
interactive rebase tool, you can then stop after each commit you want to modify and change the
message, add files, or do whatever you wish. You can run rebase interactively by adding the -i option
to git rebase. You must indicate how far back you want to rewrite commits by telling the command

223

which commit to rebase onto.

For example, if you want to change the last three commit messages, or any of the commit messages in
that group, you supply as an argument to git rebase -i the parent of the last commit you want to
edit, which is HEAD~2^ or HEAD~3. It may be easier to remember the ~3 because you’re trying to edit
the last three commits; but keep in mind that you’re actually designating four commits ago, the
parent of the last commit you want to edit:

$ git rebase -i HEAD~3

Remember again that this is a rebasing command – every commit included in the range
HEAD~3..HEAD will be rewritten, whether you change the message or not. Don’t include any commit
you’ve already pushed to a central server – doing so will confuse other developers by providing an
alternate version of the same change.

Running this command gives you a list of commits in your text editor that looks something like this:

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Rebase 710f0f8..a5f4a0d onto 710f0f8

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell

#

These lines can be re-ordered; they are executed from top to bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.

#

Note that empty commits are commented out

It’s important to note that these commits are listed in the opposite order than you normally see them
using the log command. If you run a log, you see something like this:

$ git log --pretty=format:"%h %s" HEAD~3..HEAD

a5f4a0d added cat-file

310154e updated README formatting and added blame

f7f3f6d changed my name a bit

Notice the reverse order. The interactive rebase gives you a script that it’s going to run. It will start at

224

the commit you specify on the command line (HEAD~3) and replay the changes introduced in each of
these commits from top to bottom. It lists the oldest at the top, rather than the newest, because
that’s the first one it will replay.

You need to edit the script so that it stops at the commit you want to edit. To do so, change the word
‘pick’ to the word ‘edit’ for each of the commits you want the script to stop after. For example, to
modify only the third commit message, you change the file to look like this:

edit f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

When you save and exit the editor, Git rewinds you back to the last commit in that list and drops you
on the command line with the following message:

$ git rebase -i HEAD~3

Stopped at f7f3f6d... changed my name a bit

You can amend the commit now, with

 git commit --amend

Once you’re satisfied with your changes, run

 git rebase --continue

These instructions tell you exactly what to do. Type

$ git commit --amend

Change the commit message, and exit the editor. Then, run

$ git rebase --continue

This command will apply the other two commits automatically, and then you’re done. If you change
pick to edit on more lines, you can repeat these steps for each commit you change to edit. Each time,
Git will stop, let you amend the commit, and continue when you’re finished.

Reordering Commits
You can also use interactive rebases to reorder or remove commits entirely. If you want to remove the
“added cat-file” commit and change the order in which the other two commits are introduced, you
can change the rebase script from this

pick f7f3f6d changed my name a bit

pick 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

225

to this:

pick 310154e updated README formatting and added blame

pick f7f3f6d changed my name a bit

When you save and exit the editor, Git rewinds your branch to the parent of these commits, applies
310154e and then f7f3f6d, and then stops. You effectively change the order of those commits and
remove the “added cat-file” commit completely.

Squashing Commits
It’s also possible to take a series of commits and squash them down into a single commit with the
interactive rebasing tool. The script puts helpful instructions in the rebase message:

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell

#

These lines can be re-ordered; they are executed from top to bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.

#

Note that empty commits are commented out

If, instead of “pick” or “edit”, you specify “squash”, Git applies both that change and the change
directly before it and makes you merge the commit messages together. So, if you want to make a
single commit from these three commits, you make the script look like this:

pick f7f3f6d changed my name a bit

squash 310154e updated README formatting and added blame

squash a5f4a0d added cat-file

When you save and exit the editor, Git applies all three changes and then puts you back into the editor
to merge the three commit messages:

226

This is a combination of 3 commits.

The first commit's message is:

changed my name a bit

This is the 2nd commit message:

updated README formatting and added blame

This is the 3rd commit message:

added cat-file

When you save that, you have a single commit that introduces the changes of all three previous
commits.

Splitting a Commit
Splitting a commit undoes a commit and then partially stages and commits as many times as commits
you want to end up with. For example, suppose you want to split the middle commit of your three
commits. Instead of “updated README formatting and added blame”, you want to split it into two
commits: “updated README formatting” for the first, and “added blame” for the second. You can
do that in the rebase -i script by changing the instruction on the commit you want to split to
“edit”:

pick f7f3f6d changed my name a bit

edit 310154e updated README formatting and added blame

pick a5f4a0d added cat-file

Then, when the script drops you to the command line, you reset that commit, take the changes that
have been reset, and create multiple commits out of them. When you save and exit the editor, Git
rewinds to the parent of the first commit in your list, applies the first commit (f7f3f6d), applies the
second (310154e), and drops you to the console. There, you can do a mixed reset of that commit with
git reset HEAD^, which effectively undoes that commit and leaves the modified files unstaged.
Now you can stage and commit files until you have several commits, and run git rebase
--continue when you’re done:

$ git reset HEAD^

$ git add README

$ git commit -m 'updated README formatting'

$ git add lib/simplegit.rb

$ git commit -m 'added blame'

$ git rebase --continue

Git applies the last commit (a5f4a0d) in the script, and your history looks like this:

227

$ git log -4 --pretty=format:"%h %s"

1c002dd added cat-file

9b29157 added blame

35cfb2b updated README formatting

f3cc40e changed my name a bit

Once again, this changes the SHA-1s of all the commits in your list, so make sure no commit shows up
in that list that you’ve already pushed to a shared repository.

The Nuclear Option: filter-branch
There is another history-rewriting option that you can use if you need to rewrite a larger number of
commits in some scriptable way – for instance, changing your email address globally or removing a file
from every commit. The command is filter-branch, and it can rewrite huge swaths of your history,
so you probably shouldn’t use it unless your project isn’t yet public and other people haven’t
based work off the commits you’re about to rewrite. However, it can be very useful. You’ll learn a
few of the common uses so you can get an idea of some of the things it’s capable of.

Removing a File from Every Commit

This occurs fairly commonly. Someone accidentally commits a huge binary file with a thoughtless git
add ., and you want to remove it everywhere. Perhaps you accidentally committed a file that
contained a password, and you want to make your project open source. filter-branch is the tool
you probably want to use to scrub your entire history. To remove a file named passwords.txt from
your entire history, you can use the --tree-filter option to filter-branch:

$ git filter-branch --tree-filter 'rm -f passwords.txt' HEAD

Rewrite 6b9b3cf04e7c5686a9cb838c3f36a8cb6a0fc2bd (21/21)

Ref 'refs/heads/master' was rewritten

The --tree-filter option runs the specified command after each checkout of the project and then
recommits the results. In this case, you remove a file called passwords.txt from every snapshot,
whether it exists or not. If you want to remove all accidentally committed editor backup files, you can
run something like git filter-branch --tree-filter 'rm -f *~' HEAD.

You’ll be able to watch Git rewriting trees and commits and then move the branch pointer at the end.
It’s generally a good idea to do this in a testing branch and then hard-reset your master branch after
you’ve determined the outcome is what you really want. To run filter-branch on all your
branches, you can pass --all to the command.

Making a Subdirectory the New Root

Suppose you’ve done an import from another source control system and have subdirectories that
make no sense (trunk, tags, and so on). If you want to make the trunk subdirectory be the new
project root for every commit, filter-branch can help you do that, too:

228

$ git filter-branch --subdirectory-filter trunk HEAD

Rewrite 856f0bf61e41a27326cdae8f09fe708d679f596f (12/12)

Ref 'refs/heads/master' was rewritten

Now your new project root is what was in the trunk subdirectory each time. Git will also automatically
remove commits that did not affect the subdirectory.

Changing Email Addresses Globally

Another common case is that you forgot to run git config to set your name and email address
before you started working, or perhaps you want to open-source a project at work and change all your
work email addresses to your personal address. In any case, you can change email addresses in
multiple commits in a batch with filter-branch as well. You need to be careful to change only the
email addresses that are yours, so you use --commit-filter:

$ git filter-branch --commit-filter '

 if ["$GIT_AUTHOR_EMAIL" = "schacon@localhost"];

 then

 GIT_AUTHOR_NAME="Scott Chacon";

 GIT_AUTHOR_EMAIL="schacon@example.com";

 git commit-tree "$@";

 else

 git commit-tree "$@";

 fi' HEAD

This goes through and rewrites every commit to have your new address. Because commits contain the
SHA-1 values of their parents, this command changes every commit SHA-1 in your history, not just
those that have the matching email address.

Reset Demystified
Before moving on to more specialized tools, let’s talk about reset and checkout. These commands
are two of the most confusing parts of Git when you first encounter them. They do so many things, that
it seems hopeless to actually understand them and employ them properly. For this, we recommend a
simple metaphor.

The Three Trees
An easier way to think about reset and checkout is through the mental frame of Git being a content
manager of three different trees. By “tree” here we really mean “collection of files”, not
specifically the data structure. (There are a few cases where the index doesn’t exactly act like a tree,
but for our purposes it is easier to think about it this way for now.)

Git as a system manages and manipulates three trees in its normal operation:

Tree Role
HEAD Last commit snapshot, next parent
Index Proposed next commit snapshot

229

Tree Role
Working Directory Sandbox

The HEAD

HEAD is the pointer to the current branch reference, which is in turn a pointer to the last commit made
on that branch. That means HEAD will be the parent of the next commit that is created. It’s generally
simplest to think of HEAD as the snapshot of your last commit.

In fact, it’s pretty easy to see what that snapshot looks like. Here is an example of getting the actual
directory listing and SHA-1 checksums for each file in the HEAD snapshot:

$ git cat-file -p HEAD

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

author Scott Chacon 1301511835 -0700

committer Scott Chacon 1301511835 -0700

initial commit

$ git ls-tree -r HEAD

100644 blob a906cb2a4a904a152... README

100644 blob 8f94139338f9404f2... Rakefile

040000 tree 99f1a6d12cb4b6f19... lib

The cat-file and ls-tree commands are “plumbing” commands that are used for lower level
things and not really used in day-to-day work, but they help us see what’s going on here.

The Index

The Index is your proposed next commit. We’ve also been referring to this concept as Git’s
“Staging Area” as this is what Git looks at when you run git commit.

Git populates this index with a list of all the file contents that were last checked out into your working
directory and what they looked like when they were originally checked out. You then replace some of
those files with new versions of them, and git commit converts that into the tree for a new commit.

$ git ls-files -s

100644 a906cb2a4a904a152e80877d4088654daad0c859 0 README

100644 8f94139338f9404f26296befa88755fc2598c289 0 Rakefile

100644 47c6340d6459e05787f644c2447d2595f5d3a54b 0 lib/simplegit.rb

Again, here we’re using ls-files, which is more of a behind the scenes command that shows you
what your index currently looks like.

The index is not technically a tree structure – it’s actually implemented as a flattened manifest – but
for our purposes it’s close enough.

230

The Working Directory

Finally, you have your working directory. The other two trees store their content in an efficient but
inconvenient manner, inside the .git folder. The Working Directory unpacks them into actual files,
which makes it much easier for you to edit them. Think of the Working Directory as a sandbox, where
you can try changes out before committing them to your staging area (index) and then to history.

$ tree

.

├── README

├── Rakefile

└── lib

 └── simplegit.rb

1 directory, 3 files

The Workflow
Git’s main purpose is to record snapshots of your project in successively better states, by
manipulating these three trees.

Let’s visualize this process: say you go into a new directory with a single file in it. We’ll call this v1 of
the file, and we’ll indicate it in blue. Now we run git init, which will create a Git repository with a
HEAD reference which points to an unborn branch (master doesn’t exist yet).

231

At this point, only the Working Directory tree has any content.

Now we want to commit this file, so we use git add to take content in the Working Directory and
copy it to the Index.

232

Then we run git commit, which takes the contents of the Index and saves it as a permanent
snapshot, creates a commit object which points to that snapshot, and updates master to point to that
commit.

233

If we run git status, we’ll see no changes, because all three trees are the same.

Now we want to make a change to that file and commit it. We’ll go through the same process; first we
change the file in our working directory. Let’s call this v2 of the file, and indicate it in red.

234

If we run git status right now, we’ll see the file in red as “Changes not staged for commit,”
because that entry differs between the Index and the Working Directory. Next we run git add on it to
stage it into our Index.

235

At this point if we run git status we will see the file in green under “Changes to be committed”
because the Index and HEAD differ – that is, our proposed next commit is now different from our last
commit. Finally, we run git commit to finalize the commit.

236

Now git status will give us no output, because all three trees are the same again.

Switching branches or cloning goes through a similar process. When you checkout a branch, it
changes HEAD to point to the new branch ref, populates your Index with the snapshot of that commit,
then copies the contents of the Index into your Working Directory.

The Role of Reset
The reset command makes more sense when viewed in this context.

For the purposes of these examples, let’s say that we’ve modified file.txt again and committed
it a third time. So now our history looks like this:

237

Let’s now walk through exactly what reset does when you call it. It directly manipulates these three
trees in a simple and predictable way. It does up to three basic operations.

Step 1: Move HEAD

The first thing reset will do is move what HEAD points to. This isn’t the same as changing HEAD
itself (which is what checkout does); reset moves the branch that HEAD is pointing to. This means if
HEAD is set to the master branch (i.e. you’re currently on the master branch), running git reset
9e5e6a4 will start by making master point to 9e5e6a4.

238

No matter what form of reset with a commit you invoke, this is the first thing it will always try to do.
With reset --soft, it will simply stop there.

Now take a second to look at that diagram and realize what happened: it essentially undid the last git
commit command. When you run git commit, Git creates a new commit and moves the branch that
HEAD points to up to it. When you reset back to HEAD~ (the parent of HEAD), you are moving the
branch back to where it was, without changing the Index or Working Directory. You could now update
the Index and run git commit again to accomplish what git commit --amend would have done
(see Changing the Last Commit).

Step 2: Updating the Index (--mixed)

Note that if you run git status now you’ll see in green the difference between the Index and what
the new HEAD is.

The next thing reset will do is to update the Index with the contents of whatever snapshot HEAD now
points to.

239

If you specify the --mixed option, reset will stop at this point. This is also the default, so if you
specify no option at all (just git reset HEAD~ in this case), this is where the command will stop.

Now take another second to look at that diagram and realize what happened: it still undid your last
commit, but also unstaged everything. You rolled back to before you ran all your git add and git
commit commands.

Step 3: Updating the Working Directory (--hard)

The third thing that reset will do is to make the Working Directory look like the Index. If you use the
--hard option, it will continue to this stage.

240

So let’s think about what just happened. You undid your last commit, the git add and git commit
commands, and all the work you did in your working directory.

It’s important to note that this flag (--hard) is the only way to make the reset command
dangerous, and one of the very few cases where Git will actually destroy data. Any other invocation of
reset can be pretty easily undone, but the --hard option cannot, since it forcibly overwrites files in
the Working Directory. In this particular case, we still have the v3 version of our file in a commit in our
Git DB, and we could get it back by looking at our reflog, but if we had not committed it, Git still
would have overwritten the file and it would be unrecoverable.

Recap

The reset command overwrites these three trees in a specific order, stopping when you tell it to:

1. Move the branch HEAD points to (stop here if --soft)

2. Make the Index look like HEAD (stop here unless --hard)

3. Make the Working Directory look like the Index

241

Reset With a Path
That covers the behavior of reset in its basic form, but you can also provide it with a path to act upon.
If you specify a path, reset will skip step 1, and limit the remainder of its actions to a specific file or
set of files. This actually sort of makes sense – HEAD is just a pointer, and you can’t point to part of
one commit and part of another. But the Index and Working directory can be partially updated, so
reset proceeds with steps 2 and 3.

So, assume we run git reset file.txt. This form (since you did not specify a commit SHA-1 or
branch, and you didn’t specify --soft or --hard) is shorthand for git reset --mixed HEAD
file.txt, which will:

1. Move the branch HEAD points to (skipped)
2. Make the Index look like HEAD (stop here)

So it essentially just copies file.txt from HEAD to the Index.

This has the practical effect of unstaging the file. If we look at the diagram for that command and think
about what git add does, they are exact opposites.

242

This is why the output of the git status command suggests that you run this to unstage a file. (See
將已預存的檔案移出預存區 for more on this.)

We could just as easily not let Git assume we meant “pull the data from HEAD” by specifying a
specific commit to pull that file version from. We would just run something like git reset eb43bf
file.txt.

243

This effectively does the same thing as if we had reverted the content of the file to v1 in the Working
Directory, ran git add on it, then reverted it back to v3 again (without actually going through all
those steps). If we run git commit now, it will record a change that reverts that file back to v1, even
though we never actually had it in our Working Directory again.

It’s also interesting to note that like git add, the reset command will accept a --patch option to
unstage content on a hunk-by-hunk basis. So you can selectively unstage or revert content.

Squashing
Let’s look at how to do something interesting with this newfound power – squashing commits.

Say you have a series of commits with messages like “oops.”, “WIP” and “forgot this file”. You
can use reset to quickly and easily squash them into a single commit that makes you look really
smart. (Squashing Commits shows another way to do this, but in this example it’s simpler to use
reset.)

Let’s say you have a project where the first commit has one file, the second commit added a new file
and changed the first, and the third commit changed the first file again. The second commit was a
work in progress and you want to squash it down.

244

You can run git reset --soft HEAD~2 to move the HEAD branch back to an older commit (the first
commit you want to keep):

245

And then simply run git commit again:

246

Now you can see that your reachable history, the history you would push, now looks like you had one
commit with file-a.txt v1, then a second that both modified file-a.txt to v3 and added file-
b.txt. The commit with the v2 version of the file is no longer in the history.

Check It Out
Finally, you may wonder what the difference between checkout and reset is. Like reset, checkout
manipulates the three trees, and it is a bit different depending on whether you give the command a
file path or not.

247

Without Paths

Running git checkout [branch] is pretty similar to running git reset --hard [branch] in
that it updates all three trees for you to look like [branch], but there are two important differences.

First, unlike reset --hard, checkout is working-directory safe; it will check to make sure it’s not
blowing away files that have changes to them. Actually, it’s a bit smarter than that – it tries to do a
trivial merge in the Working Directory, so all of the files you haven’t changed in will be updated.
reset --hard, on the other hand, will simply replace everything across the board without checking.

The second important difference is how it updates HEAD. Where reset will move the branch that
HEAD points to, checkout will move HEAD itself to point to another branch.

For instance, say we have master and develop branches which point at different commits, and
we’re currently on develop (so HEAD points to it). If we run git reset master, develop itself will
now point to the same commit that master does. If we instead run git checkout master, develop
does not move, HEAD itself does. HEAD will now point to master.

So, in both cases we’re moving HEAD to point to commit A, but how we do so is very different. reset
will move the branch HEAD points to, checkout moves HEAD itself.

With Paths

The other way to run checkout is with a file path, which, like reset, does not move HEAD. It is just
like git reset [branch] file in that it updates the index with that file at that commit, but it also

248

overwrites the file in the working directory. It would be exactly like git reset --hard [branch]
file (if reset would let you run that) – it’s not working-directory safe, and it does not move HEAD.

Also, like git reset and git add, checkout will accept a --patch option to allow you to selectively
revert file contents on a hunk-by-hunk basis.

Summary
Hopefully now you understand and feel more comfortable with the reset command, but are probably
still a little confused about how exactly it differs from checkout and could not possibly remember all
the rules of the different invocations.

Here’s a cheat-sheet for which commands affect which trees. The “HEAD” column reads “REF” if
that command moves the reference (branch) that HEAD points to, and “HEAD” if it moves HEAD
itself. Pay especial attention to the WD Safe? column – if it says NO, take a second to think before
running that command.

HEAD Index Workdir WD Safe?
Commit Level
reset --soft [commit] REF NO NO YES
reset [commit] REF YES NO YES
reset --hard [commit] REF YES YES NO
checkout [commit] HEAD YES YES YES
File Level
reset (commit) [file] NO YES NO YES
checkout (commit) [file] NO YES YES NO

Advanced Merging
Merging in Git is typically fairly easy. Since Git makes it easy to merge another branch multiple times, it
means that you can have a very long lived branch but you can keep it up to date as you go, solving
small conflicts often, rather than be surprised by one enormous conflict at the end of the series.

However, sometimes tricky conflicts do occur. Unlike some other version control systems, Git does not
try to be overly clever about merge conflict resolution. Git’s philosophy is to be smart about
determining when a merge resolution is unambiguous, but if there is a conflict, it does not try to be
clever about automatically resolving it. Therefore, if you wait too long to merge two branches that
diverge quickly, you can run into some issues.

In this section, we’ll go over what some of those issues might be and what tools Git gives you to help
handle these more tricky situations. We’ll also cover some of the different, non-standard types of
merges you can do, as well as see how to back out of merges that you’ve done.

Merge Conflicts
While we covered some basics on resolving merge conflicts in 合併衝突的基本解法, for more complex
conflicts, Git provides a few tools to help you figure out what’s going on and how to better deal with
the conflict.

249

First of all, if at all possible, try to make sure your working directory is clean before doing a merge that
may have conflicts. If you have work in progress, either commit it to a temporary branch or stash it.
This makes it so that you can undo anything you try here. If you have unsaved changes in your
working directory when you try a merge, some of these tips may help you lose that work.

Let’s walk through a very simple example. We have a super simple Ruby file that prints hello world.

#! /usr/bin/env ruby

def hello

 puts 'hello world'

end

hello()

In our repository, we create a new branch named whitespace and proceed to change all the Unix line
endings to DOS line endings, essentially changing every line of the file, but just with whitespace. Then
we change the line “hello world” to “hello mundo”.

$ git checkout -b whitespace

Switched to a new branch 'whitespace'

$ unix2dos hello.rb

unix2dos: converting file hello.rb to DOS format ...

$ git commit -am 'converted hello.rb to DOS'

[whitespace 3270f76] converted hello.rb to DOS

 1 file changed, 7 insertions(+), 7 deletions(-)

$ vim hello.rb

$ git diff -b

diff --git a/hello.rb b/hello.rb

index ac51efd..e85207e 100755

--- a/hello.rb

+++ b/hello.rb

@@ -1,7 +1,7 @@

 #! /usr/bin/env ruby

 def hello

- puts 'hello world'

+ puts 'hello mundo'^M

 end

 hello()

$ git commit -am 'hello mundo change'

[whitespace 6d338d2] hello mundo change

 1 file changed, 1 insertion(+), 1 deletion(-)

Now we switch back to our master branch and add some documentation for the function.

250

$ git checkout master

Switched to branch 'master'

$ vim hello.rb

$ git diff

diff --git a/hello.rb b/hello.rb

index ac51efd..36c06c8 100755

--- a/hello.rb

+++ b/hello.rb

@@ -1,5 +1,6 @@

 #! /usr/bin/env ruby

+# prints out a greeting

 def hello

 puts 'hello world'

 end

$ git commit -am 'document the function'

[master bec6336] document the function

 1 file changed, 1 insertion(+)

Now we try to merge in our whitespace branch and we’ll get conflicts because of the whitespace
changes.

$ git merge whitespace

Auto-merging hello.rb

CONFLICT (content): Merge conflict in hello.rb

Automatic merge failed; fix conflicts and then commit the result.

Aborting a Merge

We now have a few options. First, let’s cover how to get out of this situation. If you perhaps weren’t
expecting conflicts and don’t want to quite deal with the situation yet, you can simply back out of the
merge with git merge --abort.

$ git status -sb

master

UU hello.rb

$ git merge --abort

$ git status -sb

master

The git merge --abort option tries to revert back to your state before you ran the merge. The only
cases where it may not be able to do this perfectly would be if you had unstashed, uncommitted
changes in your working directory when you ran it, otherwise it should work fine.

251

If for some reason you just want to start over, you can also run git reset --hard HEAD, and your
repository will be back to the last committed state. Remember that any uncommitted work will be lost,
so make sure you don’t want any of your changes.

Ignoring Whitespace

In this specific case, the conflicts are whitespace related. We know this because the case is simple, but
it’s also pretty easy to tell in real cases when looking at the conflict because every line is removed on
one side and added again on the other. By default, Git sees all of these lines as being changed, so it
can’t merge the files.

The default merge strategy can take arguments though, and a few of them are about properly ignoring
whitespace changes. If you see that you have a lot of whitespace issues in a merge, you can simply
abort it and do it again, this time with -Xignore-all-space or -Xignore-space-change. The first
option ignores whitespace completely when comparing lines, the second treats sequences of one or
more whitespace characters as equivalent.

$ git merge -Xignore-space-change whitespace

Auto-merging hello.rb

Merge made by the 'recursive' strategy.

 hello.rb | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

Since in this case, the actual file changes were not conflicting, once we ignore the whitespace changes,
everything merges just fine.

This is a lifesaver if you have someone on your team who likes to occasionally reformat everything
from spaces to tabs or vice-versa.

Manual File Re-merging

Though Git handles whitespace pre-processing pretty well, there are other types of changes that
perhaps Git can’t handle automatically, but are scriptable fixes. As an example, let’s pretend that
Git could not handle the whitespace change and we needed to do it by hand.

What we really need to do is run the file we’re trying to merge in through a dos2unix program before
trying the actual file merge. So how would we do that?

First, we get into the merge conflict state. Then we want to get copies of my version of the file, their
version (from the branch we’re merging in) and the common version (from where both sides
branched off). Then we want to fix up either their side or our side and re-try the merge again for just
this single file.

Getting the three file versions is actually pretty easy. Git stores all of these versions in the index under
“stages” which each have numbers associated with them. Stage 1 is the common ancestor, stage 2 is
your version and stage 3 is from the MERGE_HEAD, the version you’re merging in (“theirs”).

You can extract a copy of each of these versions of the conflicted file with the git show command and
a special syntax.

252

$ git show :1:hello.rb > hello.common.rb

$ git show :2:hello.rb > hello.ours.rb

$ git show :3:hello.rb > hello.theirs.rb

If you want to get a little more hard core, you can also use the ls-files -u plumbing command to
get the actual SHA-1s of the Git blobs for each of these files.

$ git ls-files -u

100755 ac51efdc3df4f4fd328d1a02ad05331d8e2c9111 1 hello.rb

100755 36c06c8752c78d2aff89571132f3bf7841a7b5c3 2 hello.rb

100755 e85207e04dfdd5eb0a1e9febbc67fd837c44a1cd 3 hello.rb

The :1:hello.rb is just a shorthand for looking up that blob SHA-1.

Now that we have the content of all three stages in our working directory, we can manually fix up
theirs to fix the whitespace issue and re-merge the file with the little-known git merge-file
command which does just that.

$ dos2unix hello.theirs.rb

dos2unix: converting file hello.theirs.rb to Unix format ...

$ git merge-file -p \

 hello.ours.rb hello.common.rb hello.theirs.rb > hello.rb

$ git diff -b

diff --cc hello.rb

index 36c06c8,e85207e..0000000

--- a/hello.rb

+++ b/hello.rb

@@@ -1,8 -1,7 +1,8 @@@

 #! /usr/bin/env ruby

 +# prints out a greeting

 def hello

- puts 'hello world'

+ puts 'hello mundo'

 end

 hello()

At this point we have nicely merged the file. In fact, this actually works better than the ignore-
space-change option because this actually fixes the whitespace changes before merge instead of
simply ignoring them. In the ignore-space-change merge, we actually ended up with a few lines
with DOS line endings, making things mixed.

If you want to get an idea before finalizing this commit about what was actually changed between one
side or the other, you can ask git diff to compare what is in your working directory that you’re
about to commit as the result of the merge to any of these stages. Let’s go through them all.

253

To compare your result to what you had in your branch before the merge, in other words, to see what
the merge introduced, you can run git diff --ours

$ git diff --ours

* Unmerged path hello.rb

diff --git a/hello.rb b/hello.rb

index 36c06c8..44d0a25 100755

--- a/hello.rb

+++ b/hello.rb

@@ -2,7 +2,7 @@

 # prints out a greeting

 def hello

- puts 'hello world'

+ puts 'hello mundo'

 end

 hello()

So here we can easily see that what happened in our branch, what we’re actually introducing to this
file with this merge, is changing that single line.

If we want to see how the result of the merge differed from what was on their side, you can run git
diff --theirs. In this and the following example, we have to use -b to strip out the whitespace
because we’re comparing it to what is in Git, not our cleaned up hello.theirs.rb file.

$ git diff --theirs -b

* Unmerged path hello.rb

diff --git a/hello.rb b/hello.rb

index e85207e..44d0a25 100755

--- a/hello.rb

+++ b/hello.rb

@@ -1,5 +1,6 @@

 #! /usr/bin/env ruby

+# prints out a greeting

 def hello

 puts 'hello mundo'

 end

Finally, you can see how the file has changed from both sides with git diff --base.

254

$ git diff --base -b

* Unmerged path hello.rb

diff --git a/hello.rb b/hello.rb

index ac51efd..44d0a25 100755

--- a/hello.rb

+++ b/hello.rb

@@ -1,7 +1,8 @@

 #! /usr/bin/env ruby

+# prints out a greeting

 def hello

- puts 'hello world'

+ puts 'hello mundo'

 end

 hello()

At this point we can use the git clean command to clear out the extra files we created to do the
manual merge but no longer need.

$ git clean -f

Removing hello.common.rb

Removing hello.ours.rb

Removing hello.theirs.rb

Checking Out Conflicts

Perhaps we’re not happy with the resolution at this point for some reason, or maybe manually
editing one or both sides still didn’t work well and we need more context.

Let’s change up the example a little. For this example, we have two longer lived branches that each
have a few commits in them but create a legitimate content conflict when merged.

$ git log --graph --oneline --decorate --all

* f1270f7 (HEAD, master) update README

* 9af9d3b add a README

* 694971d update phrase to hola world

| * e3eb223 (mundo) add more tests

| * 7cff591 add testing script

| * c3ffff1 changed text to hello mundo

|/

* b7dcc89 initial hello world code

We now have three unique commits that live only on the master branch and three others that live on
the mundo branch. If we try to merge the mundo branch in, we get a conflict.

255

$ git merge mundo

Auto-merging hello.rb

CONFLICT (content): Merge conflict in hello.rb

Automatic merge failed; fix conflicts and then commit the result.

We would like to see what the merge conflict is. If we open up the file, we’ll see something like this:

#! /usr/bin/env ruby

def hello

<<<<<<< HEAD

 puts 'hola world'

=======

 puts 'hello mundo'

>>>>>>> mundo

end

hello()

Both sides of the merge added content to this file, but some of the commits modified the file in the
same place that caused this conflict.

Let’s explore a couple of tools that you now have at your disposal to determine how this conflict
came to be. Perhaps it’s not obvious how exactly you should fix this conflict. You need more context.

One helpful tool is git checkout with the ‘--conflict’ option. This will re-checkout the file again
and replace the merge conflict markers. This can be useful if you want to reset the markers and try to
resolve them again.

You can pass --conflict either diff3 or merge (which is the default). If you pass it diff3, Git will
use a slightly different version of conflict markers, not only giving you the “ours” and “theirs”
versions, but also the “base” version inline to give you more context.

$ git checkout --conflict=diff3 hello.rb

Once we run that, the file will look like this instead:

256

#! /usr/bin/env ruby

def hello

<<<<<<< ours

 puts 'hola world'

||||||| base

 puts 'hello world'

=======

 puts 'hello mundo'

>>>>>>> theirs

end

hello()

If you like this format, you can set it as the default for future merge conflicts by setting the
merge.conflictstyle setting to diff3.

$ git config --global merge.conflictstyle diff3

The git checkout command can also take --ours and --theirs options, which can be a really fast
way of just choosing either one side or the other without merging things at all.

This can be particularly useful for conflicts of binary files where you can simply choose one side, or
where you only want to merge certain files in from another branch - you can do the merge and then
checkout certain files from one side or the other before committing.

Merge Log

Another useful tool when resolving merge conflicts is git log. This can help you get context on what
may have contributed to the conflicts. Reviewing a little bit of history to remember why two lines of
development were touching the same area of code can be really helpful sometimes.

To get a full list of all of the unique commits that were included in either branch involved in this merge,
we can use the “triple dot” syntax that we learned in Triple Dot.

$ git log --oneline --left-right HEAD...MERGE_HEAD

< f1270f7 update README

< 9af9d3b add a README

< 694971d update phrase to hola world

> e3eb223 add more tests

> 7cff591 add testing script

> c3ffff1 changed text to hello mundo

That’s a nice list of the six total commits involved, as well as which line of development each commit
was on.

We can further simplify this though to give us much more specific context. If we add the --merge
option to git log, it will only show the commits in either side of the merge that touch a file that’s

257

currently conflicted.

$ git log --oneline --left-right --merge

< 694971d update phrase to hola world

> c3ffff1 changed text to hello mundo

If you run that with the -p option instead, you get just the diffs to the file that ended up in conflict. This
can be really helpful in quickly giving you the context you need to help understand why something
conflicts and how to more intelligently resolve it.

Combined Diff Format

Since Git stages any merge results that are successful, when you run git diff while in a conflicted
merge state, you only get what is currently still in conflict. This can be helpful to see what you still have
to resolve.

When you run git diff directly after a merge conflict, it will give you information in a rather unique
diff output format.

$ git diff

diff --cc hello.rb

index 0399cd5,59727f0..0000000

--- a/hello.rb

+++ b/hello.rb

@@@ -1,7 -1,7 +1,11 @@@

 #! /usr/bin/env ruby

 def hello

++<<<<<<< HEAD

 + puts 'hola world'

++=======

+ puts 'hello mundo'

++>>>>>>> mundo

 end

 hello()

The format is called “Combined Diff” and gives you two columns of data next to each line. The first
column shows you if that line is different (added or removed) between the “ours” branch and the file
in your working directory and the second column does the same between the “theirs” branch and
your working directory copy.

So in that example you can see that the <<<<<<< and >>>>>>> lines are in the working copy but were
not in either side of the merge. This makes sense because the merge tool stuck them in there for our
context, but we’re expected to remove them.

If we resolve the conflict and run git diff again, we’ll see the same thing, but it’s a little more
useful.

258

$ vim hello.rb

$ git diff

diff --cc hello.rb

index 0399cd5,59727f0..0000000

--- a/hello.rb

+++ b/hello.rb

@@@ -1,7 -1,7 +1,7 @@@

 #! /usr/bin/env ruby

 def hello

- puts 'hola world'

 - puts 'hello mundo'

++ puts 'hola mundo'

 end

 hello()

This shows us that “hola world” was in our side but not in the working copy, that “hello mundo”
was in their side but not in the working copy and finally that “hola mundo” was not in either side but
is now in the working copy. This can be useful to review before committing the resolution.

You can also get this from the git log for any merge to see how something was resolved after the
fact. Git will output this format if you run git show on a merge commit, or if you add a --cc option to
a git log -p (which by default only shows patches for non-merge commits).

$ git log --cc -p -1

commit 14f41939956d80b9e17bb8721354c33f8d5b5a79

Merge: f1270f7 e3eb223

Author: Scott Chacon <schacon@gmail.com>

Date: Fri Sep 19 18:14:49 2014 +0200

 Merge branch 'mundo'

 Conflicts:

 hello.rb

diff --cc hello.rb

index 0399cd5,59727f0..e1d0799

--- a/hello.rb

+++ b/hello.rb

@@@ -1,7 -1,7 +1,7 @@@

 #! /usr/bin/env ruby

 def hello

- puts 'hola world'

 - puts 'hello mundo'

++ puts 'hola mundo'

 end

 hello()

259

Undoing Merges
Now that you know how to create a merge commit, you’ll probably make some by mistake. One of
the great things about working with Git is that it’s okay to make mistakes, because it’s possible
(and in many cases easy) to fix them.

Merge commits are no different. Let’s say you started work on a topic branch, accidentally merged it
into master, and now your commit history looks like this:

圖表 137. Accidental merge commit

There are two ways to approach this problem, depending on what your desired outcome is.

Fix the references

If the unwanted merge commit only exists on your local repository, the easiest and best solution is to
move the branches so that they point where you want them to. In most cases, if you follow the errant
git merge with git reset --hard HEAD~, this will reset the branch pointers so they look like this:

圖表 138. History after git reset --hard HEAD~

260

We covered reset back in Reset Demystified, so it shouldn’t be too hard to figure out what’s going
on here. Here’s a quick refresher: reset --hard usually goes through three steps:

1. Move the branch HEAD points to. In this case, we want to move master to where it was before the
merge commit (C6).

2. Make the index look like HEAD.
3. Make the working directory look like the index.

The downside of this approach is that it’s rewriting history, which can be problematic with a shared
repository. Check out 使用衍和的危險 for more on what can happen; the short version is that if other
people have the commits you’re rewriting, you should probably avoid reset. This approach also
won’t work if any other commits have been created since the merge; moving the refs would
effectively lose those changes.

Reverse the commit

If moving the branch pointers around isn’t going to work for you, Git gives you the option of making a
new commit which undoes all the changes from an existing one. Git calls this operation a “revert”,
and in this particular scenario, you’d invoke it like this:

$ git revert -m 1 HEAD

[master b1d8379] Revert "Merge branch 'topic'"

The -m 1 flag indicates which parent is the “mainline” and should be kept. When you invoke a
merge into HEAD (git merge topic), the new commit has two parents: the first one is HEAD (C6), and
the second is the tip of the branch being merged in (C4). In this case, we want to undo all the changes
introduced by merging in parent #2 (C4), while keeping all the content from parent #1 (C6).

The history with the revert commit looks like this:

圖表 139. History after git revert -m 1

The new commit ^M has exactly the same contents as C6, so starting from here it’s as if the merge
never happened, except that the now-unmerged commits are still in HEAD's history. Git will get
confused if you try to merge topic into master again:

261

$ git merge topic

Already up-to-date.

There’s nothing in topic that isn’t already reachable from master. What’s worse, if you add work
to topic and merge again, Git will only bring in the changes since the reverted merge:

圖表 140. History with a bad merge

The best way around this is to un-revert the original merge, since now you want to bring in the
changes that were reverted out, then create a new merge commit:

$ git revert ^M

[master 09f0126] Revert "Revert "Merge branch 'topic'""

$ git merge topic

圖表 141. History after re-merging a reverted merge

In this example, M and ^M cancel out. ^^M effectively merges in the changes from C3 and C4, and C8
merges in the changes from C7, so now topic is fully merged.

Other Types of Merges
So far we’ve covered the normal merge of two branches, normally handled with what is called the
“recursive” strategy of merging. There are other ways to merge branches together however. Let’s
cover a few of them quickly.

262

Our or Theirs Preference

First of all, there is another useful thing we can do with the normal “recursive” mode of merging.
We’ve already seen the ignore-all-space and ignore-space-change options which are passed
with a -X but we can also tell Git to favor one side or the other when it sees a conflict.

By default, when Git sees a conflict between two branches being merged, it will add merge conflict
markers into your code and mark the file as conflicted and let you resolve it. If you would prefer for Git
to simply choose a specific side and ignore the other side instead of letting you manually resolve the
conflict, you can pass the merge command either a -Xours or -Xtheirs.

If Git sees this, it will not add conflict markers. Any differences that are mergeable, it will merge. Any
differences that conflict, it will simply choose the side you specify in whole, including binary files.

If we go back to the “hello world” example we were using before, we can see that merging in our
branch causes conflicts.

$ git merge mundo

Auto-merging hello.rb

CONFLICT (content): Merge conflict in hello.rb

Resolved 'hello.rb' using previous resolution.

Automatic merge failed; fix conflicts and then commit the result.

However if we run it with -Xours or -Xtheirs it does not.

$ git merge -Xours mundo

Auto-merging hello.rb

Merge made by the 'recursive' strategy.

 hello.rb | 2 +-

 test.sh | 2 ++

 2 files changed, 3 insertions(+), 1 deletion(-)

 create mode 100644 test.sh

In that case, instead of getting conflict markers in the file with “hello mundo” on one side and “hola
world” on the other, it will simply pick “hola world”. However, all the other non-conflicting changes
on that branch are merged successfully in.

This option can also be passed to the git merge-file command we saw earlier by running
something like git merge-file --ours for individual file merges.

If you want to do something like this but not have Git even try to merge changes from the other side in,
there is a more draconian option, which is the “ours” merge strategy. This is different from the
“ours” recursive merge option.

This will basically do a fake merge. It will record a new merge commit with both branches as parents,
but it will not even look at the branch you’re merging in. It will simply record as the result of the
merge the exact code in your current branch.

263

$ git merge -s ours mundo

Merge made by the 'ours' strategy.

$ git diff HEAD HEAD~

$

You can see that there is no difference between the branch we were on and the result of the merge.

This can often be useful to basically trick Git into thinking that a branch is already merged when doing
a merge later on. For example, say you branched off a release branch and have done some work on it
that you will want to merge back into your master branch at some point. In the meantime some
bugfix on master needs to be backported into your release branch. You can merge the bugfix branch
into the release branch and also merge -s ours the same branch into your master branch (even
though the fix is already there) so when you later merge the release branch again, there are no
conflicts from the bugfix.

Subtree Merging

The idea of the subtree merge is that you have two projects, and one of the projects maps to a
subdirectory of the other one. When you specify a subtree merge, Git is often smart enough to figure
out that one is a subtree of the other and merge appropriately.

We’ll go through an example of adding a separate project into an existing project and then merging
the code of the second into a subdirectory of the first.

First, we’ll add the Rack application to our project. We’ll add the Rack project as a remote reference
in our own project and then check it out into its own branch:

$ git remote add rack_remote https://github.com/rack/rack

$ git fetch rack_remote --no-tags

warning: no common commits

remote: Counting objects: 3184, done.

remote: Compressing objects: 100% (1465/1465), done.

remote: Total 3184 (delta 1952), reused 2770 (delta 1675)

Receiving objects: 100% (3184/3184), 677.42 KiB | 4 KiB/s, done.

Resolving deltas: 100% (1952/1952), done.

From https://github.com/rack/rack

 * [new branch] build -> rack_remote/build

 * [new branch] master -> rack_remote/master

 * [new branch] rack-0.4 -> rack_remote/rack-0.4

 * [new branch] rack-0.9 -> rack_remote/rack-0.9

$ git checkout -b rack_branch rack_remote/master

Branch rack_branch set up to track remote branch

refs/remotes/rack_remote/master.

Switched to a new branch "rack_branch"

Now we have the root of the Rack project in our rack_branch branch and our own project in the
master branch. If you check out one and then the other, you can see that they have different project
roots:

264

$ ls

AUTHORS KNOWN-ISSUES Rakefile contrib lib

COPYING README bin example test

$ git checkout master

Switched to branch "master"

$ ls

README

This is sort of a strange concept. Not all the branches in your repository actually have to be branches
of the same project. It’s not common, because it’s rarely helpful, but it’s fairly easy to have
branches contain completely different histories.

In this case, we want to pull the Rack project into our master project as a subdirectory. We can do that
in Git with git read-tree. You’ll learn more about read-tree and its friends in Git Internals, but
for now know that it reads the root tree of one branch into your current staging area and working
directory. We just switched back to your master branch, and we pull the rack_branch branch into
the rack subdirectory of our master branch of our main project:

$ git read-tree --prefix=rack/ -u rack_branch

When we commit, it looks like we have all the Rack files under that subdirectory – as though we copied
them in from a tarball. What gets interesting is that we can fairly easily merge changes from one of the
branches to the other. So, if the Rack project updates, we can pull in upstream changes by switching to
that branch and pulling:

$ git checkout rack_branch

$ git pull

Then, we can merge those changes back into our master branch. To pull in the changes and
prepopulate the commit message, use the --squash option, as well as the recursive merge
strategy’s -Xsubtree option. (The recursive strategy is the default here, but we include it for clarity.)

$ git checkout master

$ git merge --squash -s recursive -Xsubtree=rack rack_branch

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

All the changes from the Rack project are merged in and ready to be committed locally. You can also
do the opposite – make changes in the rack subdirectory of your master branch and then merge them
into your rack_branch branch later to submit them to the maintainers or push them upstream.

This gives us a way to have a workflow somewhat similar to the submodule workflow without using
submodules (which we will cover in Submodules). We can keep branches with other related projects in
our repository and subtree merge them into our project occasionally. It is nice in some ways, for
example all the code is committed to a single place. However, it has other drawbacks in that it’s a bit
more complex and easier to make mistakes in reintegrating changes or accidentally pushing a branch

265

into an unrelated repository.

Another slightly weird thing is that to get a diff between what you have in your rack subdirectory and
the code in your rack_branch branch – to see if you need to merge them – you can’t use the normal
diff command. Instead, you must run git diff-tree with the branch you want to compare to:

$ git diff-tree -p rack_branch

Or, to compare what is in your rack subdirectory with what the master branch on the server was the
last time you fetched, you can run

$ git diff-tree -p rack_remote/master

Rerere
The git rerere functionality is a bit of a hidden feature. The name stands for “reuse recorded
resolution” and as the name implies, it allows you to ask Git to remember how you’ve resolved a
hunk conflict so that the next time it sees the same conflict, Git can automatically resolve it for you.

There are a number of scenarios in which this functionality might be really handy. One of the examples
that is mentioned in the documentation is if you want to make sure a long lived topic branch will
merge cleanly but don’t want to have a bunch of intermediate merge commits. With rerere turned
on you can merge occasionally, resolve the conflicts, then back out the merge. If you do this
continuously, then the final merge should be easy because rerere can just do everything for you
automatically.

This same tactic can be used if you want to keep a branch rebased so you don’t have to deal with the
same rebasing conflicts each time you do it. Or if you want to take a branch that you merged and fixed
a bunch of conflicts and then decide to rebase it instead - you likely won’t have to do all the same
conflicts again.

Another situation is where you merge a bunch of evolving topic branches together into a testable head
occasionally, as the Git project itself often does. If the tests fail, you can rewind the merges and re-do
them without the topic branch that made the tests fail without having to re-resolve the conflicts again.

To enable the rerere functionality, you simply have to run this config setting:

$ git config --global rerere.enabled true

You can also turn it on by creating the .git/rr-cache directory in a specific repository, but the config
setting is clearer and it can be done globally.

Now let’s see a simple example, similar to our previous one. Let’s say we have a file named
hello.rb that looks like this:

266

#! /usr/bin/env ruby

def hello

 puts 'hello world'

end

In one branch we change the word “hello” to “hola”, then in another branch we change the
“world” to “mundo”, just like before.

When we merge the two branches together, we’ll get a merge conflict:

$ git merge i18n-world

Auto-merging hello.rb

CONFLICT (content): Merge conflict in hello.rb

Recorded preimage for 'hello.rb'

Automatic merge failed; fix conflicts and then commit the result.

You should notice the new line Recorded preimage for FILE in there. Otherwise it should look
exactly like a normal merge conflict. At this point, rerere can tell us a few things. Normally, you might
run git status at this point to see what all conflicted:

$ git status

On branch master

Unmerged paths:

(use "git reset HEAD <file>..." to unstage)

(use "git add <file>..." to mark resolution)

#

both modified: hello.rb

#

267

However, git rerere will also tell you what it has recorded the pre-merge state for with git rerere
status:

$ git rerere status

hello.rb

And git rerere diff will show the current state of the resolution - what you started with to resolve
and what you’ve resolved it to.

$ git rerere diff

--- a/hello.rb

+++ b/hello.rb

@@ -1,11 +1,11 @@

 #! /usr/bin/env ruby

 def hello

-<<<<<<<

- puts 'hello mundo'

-=======

+<<<<<<< HEAD

 puts 'hola world'

->>>>>>>

+=======

+ puts 'hello mundo'

+>>>>>>> i18n-world

 end

Also (and this isn’t really related to rerere), you can use ls-files -u to see the conflicted files and
the before, left and right versions:

$ git ls-files -u

100644 39804c942a9c1f2c03dc7c5ebcd7f3e3a6b97519 1 hello.rb

100644 a440db6e8d1fd76ad438a49025a9ad9ce746f581 2 hello.rb

100644 54336ba847c3758ab604876419607e9443848474 3 hello.rb

Now you can resolve it to just be puts 'hola mundo' and you can run the rerere diff command
again to see what rerere will remember:

268

$ git rerere diff

--- a/hello.rb

+++ b/hello.rb

@@ -1,11 +1,7 @@

 #! /usr/bin/env ruby

 def hello

-<<<<<<<

- puts 'hello mundo'

-=======

- puts 'hola world'

->>>>>>>

+ puts 'hola mundo'

 end

So that basically says, when Git sees a hunk conflict in a hello.rb file that has “hello mundo” on
one side and “hola world” on the other, it will resolve it to “hola mundo”.

Now we can mark it as resolved and commit it:

$ git add hello.rb

$ git commit

Recorded resolution for 'hello.rb'.

[master 68e16e5] Merge branch 'i18n'

You can see that it "Recorded resolution for FILE".

Now, let’s undo that merge and then rebase it on top of our master branch instead. We can move our
branch back by using reset as we saw in Reset Demystified.

269

$ git reset --hard HEAD^

HEAD is now at ad63f15 i18n the hello

Our merge is undone. Now let’s rebase the topic branch.

$ git checkout i18n-world

Switched to branch 'i18n-world'

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: i18n one word

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

Auto-merging hello.rb

CONFLICT (content): Merge conflict in hello.rb

Resolved 'hello.rb' using previous resolution.

Failed to merge in the changes.

Patch failed at 0001 i18n one word

Now, we got the same merge conflict like we expected, but take a look at the Resolved FILE using
previous resolution line. If we look at the file, we’ll see that it’s already been resolved, there
are no merge conflict markers in it.

#! /usr/bin/env ruby

def hello

 puts 'hola mundo'

end

Also, git diff will show you how it was automatically re-resolved:

$ git diff

diff --cc hello.rb

index a440db6,54336ba..0000000

--- a/hello.rb

+++ b/hello.rb

@@@ -1,7 -1,7 +1,7 @@@

 #! /usr/bin/env ruby

 def hello

- puts 'hola world'

 - puts 'hello mundo'

++ puts 'hola mundo'

 end

270

You can also recreate the conflicted file state with the checkout command:

$ git checkout --conflict=merge hello.rb

$ cat hello.rb

#! /usr/bin/env ruby

def hello

<<<<<<< ours

 puts 'hola world'

=======

 puts 'hello mundo'

>>>>>>> theirs

end

We saw an example of this in Advanced Merging. For now though, let’s re-resolve it by just running
rerere again:

$ git rerere

Resolved 'hello.rb' using previous resolution.

$ cat hello.rb

#! /usr/bin/env ruby

def hello

 puts 'hola mundo'

end

We have re-resolved the file automatically using the rerere cached resolution. You can now add and
continue the rebase to complete it.

271

$ git add hello.rb

$ git rebase --continue

Applying: i18n one word

So, if you do a lot of re-merges, or want to keep a topic branch up to date with your master branch
without a ton of merges, or you rebase often, you can turn on rerere to help your life out a bit.

Debugging with Git
Git also provides a couple of tools to help you debug issues in your projects. Because Git is designed to
work with nearly any type of project, these tools are pretty generic, but they can often help you hunt
for a bug or culprit when things go wrong.

File Annotation
If you track down a bug in your code and want to know when it was introduced and why, file
annotation is often your best tool. It shows you what commit was the last to modify each line of any
file. So, if you see that a method in your code is buggy, you can annotate the file with git blame to
see when each line of the method was last edited and by whom. This example uses the -L option to
limit the output to lines 12 through 22:

$ git blame -L 12,22 simplegit.rb

^4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 12) def show(tree =

'master')

^4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 13) command("git

show #{tree}")

^4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 14) end

^4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 15)

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 16) def log(tree =

'master')

79eaf55d (Scott Chacon 2008-04-06 10:15:08 -0700 17) command("git log

#{tree}")

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 18) end

9f6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 19)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 20) def blame(path)

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 21) command("git

blame #{path}")

42cf2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 22) end

Notice that the first field is the partial SHA-1 of the commit that last modified that line. The next two
fields are values extracted from that commit–the author name and the authored date of that commit –
so you can easily see who modified that line and when. After that come the line number and the
content of the file. Also note the ^4832fe2 commit lines, which designate that those lines were in this
file’s original commit. That commit is when this file was first added to this project, and those lines
have been unchanged since. This is a tad confusing, because now you’ve seen at least three different
ways that Git uses the ^ to modify a commit SHA-1, but that is what it means here.

Another cool thing about Git is that it doesn’t track file renames explicitly. It records the snapshots

272

and then tries to figure out what was renamed implicitly, after the fact. One of the interesting features
of this is that you can ask it to figure out all sorts of code movement as well. If you pass -C to git
blame, Git analyzes the file you’re annotating and tries to figure out where snippets of code within it
originally came from if they were copied from elsewhere. For example, say you are refactoring a file
named GITServerHandler.m into multiple files, one of which is GITPackUpload.m. By blaming
GITPackUpload.m with the -C option, you can see where sections of the code originally came from:

$ git blame -C -L 141,153 GITPackUpload.m

f344f58d GITServerHandler.m (Scott 2009-01-04 141)

f344f58d GITServerHandler.m (Scott 2009-01-04 142) - (void)

gatherObjectShasFromC

f344f58d GITServerHandler.m (Scott 2009-01-04 143) {

70befddd GITServerHandler.m (Scott 2009-03-22 144)

//NSLog(@"GATHER COMMI

ad11ac80 GITPackUpload.m (Scott 2009-03-24 145)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 146) NSString

*parentSha;

ad11ac80 GITPackUpload.m (Scott 2009-03-24 147) GITCommit

*commit = [g

ad11ac80 GITPackUpload.m (Scott 2009-03-24 148)

ad11ac80 GITPackUpload.m (Scott 2009-03-24 149)

//NSLog(@"GATHER COMMI

ad11ac80 GITPackUpload.m (Scott 2009-03-24 150)

56ef2caf GITServerHandler.m (Scott 2009-01-05 151) if(commit) {

56ef2caf GITServerHandler.m (Scott 2009-01-05 152)

[refDict setOb

56ef2caf GITServerHandler.m (Scott 2009-01-05 153)

This is really useful. Normally, you get as the original commit the commit where you copied the code
over, because that is the first time you touched those lines in this file. Git tells you the original commit
where you wrote those lines, even if it was in another file.

Binary Search
Annotating a file helps if you know where the issue is to begin with. If you don’t know what is
breaking, and there have been dozens or hundreds of commits since the last state where you know the
code worked, you’ll likely turn to git bisect for help. The bisect command does a binary search
through your commit history to help you identify as quickly as possible which commit introduced an
issue.

Let’s say you just pushed out a release of your code to a production environment, you’re getting
bug reports about something that wasn’t happening in your development environment, and you
can’t imagine why the code is doing that. You go back to your code, and it turns out you can
reproduce the issue, but you can’t figure out what is going wrong. You can bisect the code to find out.
First you run git bisect start to get things going, and then you use git bisect bad to tell the
system that the current commit you’re on is broken. Then, you must tell bisect when the last known
good state was, using git bisect good [good_commit]:

273

$ git bisect start

$ git bisect bad

$ git bisect good v1.0

Bisecting: 6 revisions left to test after this

[ecb6e1bc347ccecc5f9350d878ce677feb13d3b2] error handling on repo

Git figured out that about 12 commits came between the commit you marked as the last good commit
(v1.0) and the current bad version, and it checked out the middle one for you. At this point, you can
run your test to see if the issue exists as of this commit. If it does, then it was introduced sometime
before this middle commit; if it doesn’t, then the problem was introduced sometime after the middle
commit. It turns out there is no issue here, and you tell Git that by typing git bisect good and
continue your journey:

$ git bisect good

Bisecting: 3 revisions left to test after this

[b047b02ea83310a70fd603dc8cd7a6cd13d15c04] secure this thing

Now you’re on another commit, halfway between the one you just tested and your bad commit. You
run your test again and find that this commit is broken, so you tell Git that with git bisect bad:

$ git bisect bad

Bisecting: 1 revisions left to test after this

[f71ce38690acf49c1f3c9bea38e09d82a5ce6014] drop exceptions table

This commit is fine, and now Git has all the information it needs to determine where the issue was
introduced. It tells you the SHA-1 of the first bad commit and show some of the commit information
and which files were modified in that commit so you can figure out what happened that may have
introduced this bug:

$ git bisect good

b047b02ea83310a70fd603dc8cd7a6cd13d15c04 is first bad commit

commit b047b02ea83310a70fd603dc8cd7a6cd13d15c04

Author: PJ Hyett <pjhyett@example.com>

Date: Tue Jan 27 14:48:32 2009 -0800

 secure this thing

:040000 040000 40ee3e7821b895e52c1695092db9bdc4c61d1730

f24d3c6ebcfc639b1a3814550e62d60b8e68a8e4 M config

When you’re finished, you should run git bisect reset to reset your HEAD to where you were
before you started, or you’ll end up in a weird state:

$ git bisect reset

274

This is a powerful tool that can help you check hundreds of commits for an introduced bug in minutes.
In fact, if you have a script that will exit 0 if the project is good or non-0 if the project is bad, you can
fully automate git bisect. First, you again tell it the scope of the bisect by providing the known bad
and good commits. You can do this by listing them with the bisect start command if you want,
listing the known bad commit first and the known good commit second:

$ git bisect start HEAD v1.0

$ git bisect run test-error.sh

Doing so automatically runs test-error.sh on each checked-out commit until Git finds the first
broken commit. You can also run something like make or make tests or whatever you have that runs
automated tests for you.

Submodules
It often happens that while working on one project, you need to use another project from within it.
Perhaps it’s a library that a third party developed or that you’re developing separately and using in
multiple parent projects. A common issue arises in these scenarios: you want to be able to treat the
two projects as separate yet still be able to use one from within the other.

Here’s an example. Suppose you’re developing a web site and creating Atom feeds. Instead of
writing your own Atom-generating code, you decide to use a library. You’re likely to have to either
include this code from a shared library like a CPAN install or Ruby gem, or copy the source code into
your own project tree. The issue with including the library is that it’s difficult to customize the library
in any way and often more difficult to deploy it, because you need to make sure every client has that
library available. The issue with vendoring the code into your own project is that any custom changes
you make are difficult to merge when upstream changes become available.

Git addresses this issue using submodules. Submodules allow you to keep a Git repository as a
subdirectory of another Git repository. This lets you clone another repository into your project and
keep your commits separate.

Starting with Submodules
We’ll walk through developing a simple project that has been split up into a main project and a few
sub-projects.

Let’s start by adding an existing Git repository as a submodule of the repository that we’re working
on. To add a new submodule you use the git submodule add command with the absolute or
relative URL of the project you would like to start tracking. In this example, we’ll add a library called
“DbConnector”.

275

$ git submodule add https://github.com/chaconinc/DbConnector

Cloning into 'DbConnector'...

remote: Counting objects: 11, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 11 (delta 0), reused 11 (delta 0)

Unpacking objects: 100% (11/11), done.

Checking connectivity... done.

By default, submodules will add the subproject into a directory named the same as the repository, in
this case “DbConnector”. You can add a different path at the end of the command if you want it to
go elsewhere.

If you run git status at this point, you’ll notice a few things.

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitmodules

 new file: DbConnector

First you should notice the new .gitmodules file. This is a configuration file that stores the mapping
between the project’s URL and the local subdirectory you’ve pulled it into:

[submodule "DbConnector"]

 path = DbConnector

 url = https://github.com/chaconinc/DbConnector

If you have multiple submodules, you’ll have multiple entries in this file. It’s important to note that
this file is version-controlled with your other files, like your .gitignore file. It’s pushed and pulled
with the rest of your project. This is how other people who clone this project know where to get the
submodule projects from.

筆記

Since the URL in the .gitmodules file is what other people will first try to clone/fetch
from, make sure to use a URL that they can access if possible. For example, if you use a
different URL to push to than others would to pull from, use the one that others have
access to. You can overwrite this value locally with git config
submodule.DbConnector.url PRIVATE_URL for your own use. When applicable, a
relative URL can be helpful.

The other listing in the git status output is the project folder entry. If you run git diff on that,
you see something interesting:

276

$ git diff --cached DbConnector

diff --git a/DbConnector b/DbConnector

new file mode 160000

index 0000000..c3f01dc

--- /dev/null

+++ b/DbConnector

@@ -0,0 +1 @@

+Subproject commit c3f01dc8862123d317dd46284b05b6892c7b29bc

Although DbConnector is a subdirectory in your working directory, Git sees it as a submodule and
doesn’t track its contents when you’re not in that directory. Instead, Git sees it as a particular
commit from that repository.

If you want a little nicer diff output, you can pass the --submodule option to git diff.

$ git diff --cached --submodule

diff --git a/.gitmodules b/.gitmodules

new file mode 100644

index 0000000..71fc376

--- /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 @@

+[submodule "DbConnector"]

+ path = DbConnector

+ url = https://github.com/chaconinc/DbConnector

Submodule DbConnector 0000000...c3f01dc (new submodule)

When you commit, you see something like this:

$ git commit -am 'added DbConnector module'

[master fb9093c] added DbConnector module

 2 files changed, 4 insertions(+)

 create mode 100644 .gitmodules

 create mode 160000 DbConnector

Notice the 160000 mode for the DbConnector entry. That is a special mode in Git that basically
means you’re recording a commit as a directory entry rather than a subdirectory or a file.

Cloning a Project with Submodules
Here we’ll clone a project with a submodule in it. When you clone such a project, by default you get
the directories that contain submodules, but none of the files within them yet:

277

$ git clone https://github.com/chaconinc/MainProject

Cloning into 'MainProject'...

remote: Counting objects: 14, done.

remote: Compressing objects: 100% (13/13), done.

remote: Total 14 (delta 1), reused 13 (delta 0)

Unpacking objects: 100% (14/14), done.

Checking connectivity... done.

$ cd MainProject

$ ls -la

total 16

drwxr-xr-x 9 schacon staff 306 Sep 17 15:21 .

drwxr-xr-x 7 schacon staff 238 Sep 17 15:21 ..

drwxr-xr-x 13 schacon staff 442 Sep 17 15:21 .git

-rw-r--r-- 1 schacon staff 92 Sep 17 15:21 .gitmodules

drwxr-xr-x 2 schacon staff 68 Sep 17 15:21 DbConnector

-rw-r--r-- 1 schacon staff 756 Sep 17 15:21 Makefile

drwxr-xr-x 3 schacon staff 102 Sep 17 15:21 includes

drwxr-xr-x 4 schacon staff 136 Sep 17 15:21 scripts

drwxr-xr-x 4 schacon staff 136 Sep 17 15:21 src

$ cd DbConnector/

$ ls

$

The DbConnector directory is there, but empty. You must run two commands: git submodule init
to initialize your local configuration file, and git submodule update to fetch all the data from that
project and check out the appropriate commit listed in your superproject:

$ git submodule init

Submodule 'DbConnector' (https://github.com/chaconinc/DbConnector)

registered for path 'DbConnector'

$ git submodule update

Cloning into 'DbConnector'...

remote: Counting objects: 11, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 11 (delta 0), reused 11 (delta 0)

Unpacking objects: 100% (11/11), done.

Checking connectivity... done.

Submodule path 'DbConnector': checked out

'c3f01dc8862123d317dd46284b05b6892c7b29bc'

Now your DbConnector subdirectory is at the exact state it was in when you committed earlier.

There is another way to do this which is a little simpler, however. If you pass --recursive to the git
clone command, it will automatically initialize and update each submodule in the repository.

278

$ git clone --recursive https://github.com/chaconinc/MainProject

Cloning into 'MainProject'...

remote: Counting objects: 14, done.

remote: Compressing objects: 100% (13/13), done.

remote: Total 14 (delta 1), reused 13 (delta 0)

Unpacking objects: 100% (14/14), done.

Checking connectivity... done.

Submodule 'DbConnector' (https://github.com/chaconinc/DbConnector)

registered for path 'DbConnector'

Cloning into 'DbConnector'...

remote: Counting objects: 11, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 11 (delta 0), reused 11 (delta 0)

Unpacking objects: 100% (11/11), done.

Checking connectivity... done.

Submodule path 'DbConnector': checked out

'c3f01dc8862123d317dd46284b05b6892c7b29bc'

Working on a Project with Submodules
Now we have a copy of a project with submodules in it and will collaborate with our teammates on
both the main project and the submodule project.

Pulling in Upstream Changes

The simplest model of using submodules in a project would be if you were simply consuming a
subproject and wanted to get updates from it from time to time but were not actually modifying
anything in your checkout. Let’s walk through a simple example there.

If you want to check for new work in a submodule, you can go into the directory and run git fetch
and git merge the upstream branch to update the local code.

$ git fetch

From https://github.com/chaconinc/DbConnector

 c3f01dc..d0354fc master -> origin/master

$ git merge origin/master

Updating c3f01dc..d0354fc

Fast-forward

 scripts/connect.sh | 1 +

 src/db.c | 1 +

 2 files changed, 2 insertions(+)

Now if you go back into the main project and run git diff --submodule you can see that the
submodule was updated and get a list of commits that were added to it. If you don’t want to type
--submodule every time you run git diff, you can set it as the default format by setting the
diff.submodule config value to “log”.

279

$ git config --global diff.submodule log

$ git diff

Submodule DbConnector c3f01dc..d0354fc:

 > more efficient db routine

 > better connection routine

If you commit at this point then you will lock the submodule into having the new code when other
people update.

There is an easier way to do this as well, if you prefer to not manually fetch and merge in the
subdirectory. If you run git submodule update --remote, Git will go into your submodules and
fetch and update for you.

$ git submodule update --remote DbConnector

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 4 (delta 2), reused 4 (delta 2)

Unpacking objects: 100% (4/4), done.

From https://github.com/chaconinc/DbConnector

 3f19983..d0354fc master -> origin/master

Submodule path 'DbConnector': checked out

'd0354fc054692d3906c85c3af05ddce39a1c0644'

This command will by default assume that you want to update the checkout to the master branch of
the submodule repository. You can, however, set this to something different if you want. For example,
if you want to have the DbConnector submodule track that repository’s “stable” branch, you can
set it in either your .gitmodules file (so everyone else also tracks it), or just in your local
.git/config file. Let’s set it in the .gitmodules file:

$ git config -f .gitmodules submodule.DbConnector.branch stable

$ git submodule update --remote

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 4 (delta 2), reused 4 (delta 2)

Unpacking objects: 100% (4/4), done.

From https://github.com/chaconinc/DbConnector

 27cf5d3..c87d55d stable -> origin/stable

Submodule path 'DbConnector': checked out

'c87d55d4c6d4b05ee34fbc8cb6f7bf4585ae6687'

If you leave off the -f .gitmodules it will only make the change for you, but it probably makes more
sense to track that information with the repository so everyone else does as well.

When we run git status at this point, Git will show us that we have “new commits” on the
submodule.

280

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: .gitmodules

 modified: DbConnector (new commits)

no changes added to commit (use "git add" and/or "git commit -a")

If you set the configuration setting status.submodulesummary, Git will also show you a short
summary of changes to your submodules:

$ git config status.submodulesummary 1

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 modified: .gitmodules

 modified: DbConnector (new commits)

Submodules changed but not updated:

* DbConnector c3f01dc...c87d55d (4):

 > catch non-null terminated lines

At this point if you run git diff we can see both that we have modified our .gitmodules file and
also that there are a number of commits that we’ve pulled down and are ready to commit to our
submodule project.

281

$ git diff

diff --git a/.gitmodules b/.gitmodules

index 6fc0b3d..fd1cc29 100644

--- a/.gitmodules

+++ b/.gitmodules

@@ -1,3 +1,4 @@

 [submodule "DbConnector"]

 path = DbConnector

 url = https://github.com/chaconinc/DbConnector

+ branch = stable

 Submodule DbConnector c3f01dc..c87d55d:

 > catch non-null terminated lines

 > more robust error handling

 > more efficient db routine

 > better connection routine

This is pretty cool as we can actually see the log of commits that we’re about to commit to in our
submodule. Once committed, you can see this information after the fact as well when you run git
log -p.

$ git log -p --submodule

commit 0a24cfc121a8a3c118e0105ae4ae4c00281cf7ae

Author: Scott Chacon <schacon@gmail.com>

Date: Wed Sep 17 16:37:02 2014 +0200

 updating DbConnector for bug fixes

diff --git a/.gitmodules b/.gitmodules

index 6fc0b3d..fd1cc29 100644

--- a/.gitmodules

+++ b/.gitmodules

@@ -1,3 +1,4 @@

 [submodule "DbConnector"]

 path = DbConnector

 url = https://github.com/chaconinc/DbConnector

+ branch = stable

Submodule DbConnector c3f01dc..c87d55d:

 > catch non-null terminated lines

 > more robust error handling

 > more efficient db routine

 > better connection routine

Git will by default try to update all of your submodules when you run git submodule update
--remote so if you have a lot of them, you may want to pass the name of just the submodule you
want to try to update.

Working on a Submodule

It’s quite likely that if you’re using submodules, you’re doing so because you really want to work
on the code in the submodule at the same time as you’re working on the code in the main project (or

282

across several submodules). Otherwise you would probably instead be using a simpler dependency
management system (such as Maven or Rubygems).

So now let’s go through an example of making changes to the submodule at the same time as the
main project and committing and publishing those changes at the same time.

So far, when we’ve run the git submodule update command to fetch changes from the
submodule repositories, Git would get the changes and update the files in the subdirectory but will
leave the sub-repository in what’s called a “detached HEAD” state. This means that there is no
local working branch (like “master”, for example) tracking changes. With no working branch
tracking changes, that means even if you commit changes to the submodule, those changes will quite
possibly be lost the next time you run git submodule update. You have to do some extra steps if
you want changes in a submodule to be tracked.

In order to set up your submodule to be easier to go in and hack on, you need do two things. You need
to go into each submodule and check out a branch to work on. Then you need to tell Git what to do if
you have made changes and then git submodule update --remote pulls in new work from
upstream. The options are that you can merge them into your local work, or you can try to rebase your
local work on top of the new changes.

First of all, let’s go into our submodule directory and check out a branch.

$ git checkout stable

Switched to branch 'stable'

Let’s try it with the “merge” option. To specify it manually, we can just add the --merge option to
our update call. Here we’ll see that there was a change on the server for this submodule and it gets
merged in.

$ git submodule update --remote --merge

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 4 (delta 2), reused 4 (delta 2)

Unpacking objects: 100% (4/4), done.

From https://github.com/chaconinc/DbConnector

 c87d55d..92c7337 stable -> origin/stable

Updating c87d55d..92c7337

Fast-forward

 src/main.c | 1 +

 1 file changed, 1 insertion(+)

Submodule path 'DbConnector': merged in

'92c7337b30ef9e0893e758dac2459d07362ab5ea'

If we go into the DbConnector directory, we have the new changes already merged into our local
stable branch. Now let’s see what happens when we make our own local change to the library and
someone else pushes another change upstream at the same time.

283

$ cd DbConnector/

$ vim src/db.c

$ git commit -am 'unicode support'

[stable f906e16] unicode support

 1 file changed, 1 insertion(+)

Now if we update our submodule we can see what happens when we have made a local change and
upstream also has a change we need to incorporate.

$ git submodule update --remote --rebase

First, rewinding head to replay your work on top of it...

Applying: unicode support

Submodule path 'DbConnector': rebased into

'5d60ef9bbebf5a0c1c1050f242ceeb54ad58da94'

If you forget the --rebase or --merge, Git will just update the submodule to whatever is on the server
and reset your project to a detached HEAD state.

$ git submodule update --remote

Submodule path 'DbConnector': checked out

'5d60ef9bbebf5a0c1c1050f242ceeb54ad58da94'

If this happens, don’t worry, you can simply go back into the directory and check out your branch
again (which will still contain your work) and merge or rebase origin/stable (or whatever remote
branch you want) manually.

If you haven’t committed your changes in your submodule and you run a submodule update that
would cause issues, Git will fetch the changes but not overwrite unsaved work in your submodule
directory.

$ git submodule update --remote

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 4 (delta 0), reused 4 (delta 0)

Unpacking objects: 100% (4/4), done.

From https://github.com/chaconinc/DbConnector

 5d60ef9..c75e92a stable -> origin/stable

error: Your local changes to the following files would be overwritten by

checkout:

 scripts/setup.sh

Please, commit your changes or stash them before you can switch

branches.

Aborting

Unable to checkout 'c75e92a2b3855c9e5b66f915308390d9db204aca' in

submodule path 'DbConnector'

If you made changes that conflict with something changed upstream, Git will let you know when you

284

run the update.

$ git submodule update --remote --merge

Auto-merging scripts/setup.sh

CONFLICT (content): Merge conflict in scripts/setup.sh

Recorded preimage for 'scripts/setup.sh'

Automatic merge failed; fix conflicts and then commit the result.

Unable to merge 'c75e92a2b3855c9e5b66f915308390d9db204aca' in submodule

path 'DbConnector'

You can go into the submodule directory and fix the conflict just as you normally would.

Publishing Submodule Changes

Now we have some changes in our submodule directory. Some of these were brought in from
upstream by our updates and others were made locally and aren’t available to anyone else yet as we
haven’t pushed them yet.

$ git diff

Submodule DbConnector c87d55d..82d2ad3:

 > Merge from origin/stable

 > updated setup script

 > unicode support

 > remove unnecessary method

 > add new option for conn pooling

If we commit in the main project and push it up without pushing the submodule changes up as well,
other people who try to check out our changes are going to be in trouble since they will have no way to
get the submodule changes that are depended on. Those changes will only exist on our local copy.

In order to make sure this doesn’t happen, you can ask Git to check that all your submodules have
been pushed properly before pushing the main project. The git push command takes the
--recurse-submodules argument which can be set to either “check” or “on-demand”. The
“check” option will make push simply fail if any of the committed submodule changes haven’t
been pushed.

285

$ git push --recurse-submodules=check

The following submodule paths contain changes that can

not be found on any remote:

 DbConnector

Please try

 git push --recurse-submodules=on-demand

or cd to the path and use

 git push

to push them to a remote.

As you can see, it also gives us some helpful advice on what we might want to do next. The simple
option is to go into each submodule and manually push to the remotes to make sure they’re
externally available and then try this push again.

The other option is to use the “on-demand” value, which will try to do this for you.

$ git push --recurse-submodules=on-demand

Pushing submodule 'DbConnector'

Counting objects: 9, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (8/8), done.

Writing objects: 100% (9/9), 917 bytes | 0 bytes/s, done.

Total 9 (delta 3), reused 0 (delta 0)

To https://github.com/chaconinc/DbConnector

 c75e92a..82d2ad3 stable -> stable

Counting objects: 2, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 266 bytes | 0 bytes/s, done.

Total 2 (delta 1), reused 0 (delta 0)

To https://github.com/chaconinc/MainProject

 3d6d338..9a377d1 master -> master

As you can see there, Git went into the DbConnector module and pushed it before pushing the main
project. If that submodule push fails for some reason, the main project push will also fail.

Merging Submodule Changes

If you change a submodule reference at the same time as someone else, you may run into some
problems. That is, if the submodule histories have diverged and are committed to diverging branches
in a superproject, it may take a bit of work for you to fix.

If one of the commits is a direct ancestor of the other (a fast-forward merge), then Git will simply
choose the latter for the merge, so that works fine.

286

Git will not attempt even a trivial merge for you, however. If the submodule commits diverge and need
to be merged, you will get something that looks like this:

$ git pull

remote: Counting objects: 2, done.

remote: Compressing objects: 100% (1/1), done.

remote: Total 2 (delta 1), reused 2 (delta 1)

Unpacking objects: 100% (2/2), done.

From https://github.com/chaconinc/MainProject

 9a377d1..eb974f8 master -> origin/master

Fetching submodule DbConnector

warning: Failed to merge submodule DbConnector (merge following commits

not found)

Auto-merging DbConnector

CONFLICT (submodule): Merge conflict in DbConnector

Automatic merge failed; fix conflicts and then commit the result.

So basically what has happened here is that Git has figured out that the two branches record points in
the submodule’s history that are divergent and need to be merged. It explains it as “merge
following commits not found”, which is confusing but we’ll explain why that is in a bit.

To solve the problem, you need to figure out what state the submodule should be in. Strangely, Git
doesn’t really give you much information to help out here, not even the SHA-1s of the commits of
both sides of the history. Fortunately, it’s simple to figure out. If you run git diff you can get the
SHA-1s of the commits recorded in both branches you were trying to merge.

$ git diff

diff --cc DbConnector

index eb41d76,c771610..0000000

--- a/DbConnector

+++ b/DbConnector

So, in this case, eb41d76 is the commit in our submodule that we had and c771610 is the commit that
upstream had. If we go into our submodule directory, it should already be on eb41d76 as the merge
would not have touched it. If for whatever reason it’s not, you can simply create and checkout a
branch pointing to it.

What is important is the SHA-1 of the commit from the other side. This is what you’ll have to merge in
and resolve. You can either just try the merge with the SHA-1 directly, or you can create a branch for it
and then try to merge that in. We would suggest the latter, even if only to make a nicer merge commit
message.

So, we will go into our submodule directory, create a branch based on that second SHA-1 from git
diff and manually merge.

287

$ cd DbConnector

$ git rev-parse HEAD

eb41d764bccf88be77aced643c13a7fa86714135

$ git branch try-merge c771610

(DbConnector) $ git merge try-merge

Auto-merging src/main.c

CONFLICT (content): Merge conflict in src/main.c

Recorded preimage for 'src/main.c'

Automatic merge failed; fix conflicts and then commit the result.

We got an actual merge conflict here, so if we resolve that and commit it, then we can simply update
the main project with the result.

$ vim src/main.c ①
$ git add src/main.c

$ git commit -am 'merged our changes'

Recorded resolution for 'src/main.c'.

[master 9fd905e] merged our changes

$ cd .. ②
$ git diff ③
diff --cc DbConnector

index eb41d76,c771610..0000000

--- a/DbConnector

+++ b/DbConnector

@@@ -1,1 -1,1 +1,1 @@@

- Subproject commit eb41d764bccf88be77aced643c13a7fa86714135

 -Subproject commit c77161012afbbe1f58b5053316ead08f4b7e6d1d

++Subproject commit 9fd905e5d7f45a0d4cbc43d1ee550f16a30e825a

$ git add DbConnector ④

$ git commit -m "Merge Tom's Changes" ⑤
[master 10d2c60] Merge Tom's Changes

① First we resolve the conflict
② Then we go back to the main project directory
③ We can check the SHA-1s again
④ Resolve the conflicted submodule entry
⑤ Commit our merge

It can be a bit confusing, but it’s really not very hard.

Interestingly, there is another case that Git handles. If a merge commit exists in the submodule
directory that contains both commits in its history, Git will suggest it to you as a possible solution. It
sees that at some point in the submodule project, someone merged branches containing these two
commits, so maybe you’ll want that one.

288

This is why the error message from before was “merge following commits not found”, because it
could not do this. It’s confusing because who would expect it to try to do this?

If it does find a single acceptable merge commit, you’ll see something like this:

$ git merge origin/master

warning: Failed to merge submodule DbConnector (not fast-forward)

Found a possible merge resolution for the submodule:

 9fd905e5d7f45a0d4cbc43d1ee550f16a30e825a: > merged our changes

If this is correct simply add it to the index for example

by using:

 git update-index --cacheinfo 160000

9fd905e5d7f45a0d4cbc43d1ee550f16a30e825a "DbConnector"

which will accept this suggestion.

Auto-merging DbConnector

CONFLICT (submodule): Merge conflict in DbConnector

Automatic merge failed; fix conflicts and then commit the result.

What it’s suggesting that you do is to update the index like you had run git add, which clears the
conflict, then commit. You probably shouldn’t do this though. You can just as easily go into the
submodule directory, see what the difference is, fast-forward to this commit, test it properly, and then
commit it.

$ cd DbConnector/

$ git merge 9fd905e

Updating eb41d76..9fd905e

Fast-forward

$ cd ..

$ git add DbConnector

$ git commit -am 'Fast forwarded to a common submodule child'

This accomplishes the same thing, but at least this way you can verify that it works and you have the
code in your submodule directory when you’re done.

Submodule Tips
There are a few things you can do to make working with submodules a little easier.

Submodule Foreach

There is a foreach submodule command to run some arbitrary command in each submodule. This
can be really helpful if you have a number of submodules in the same project.

For example, let’s say we want to start a new feature or do a bugfix and we have work going on in
several submodules. We can easily stash all the work in all our submodules.

289

$ git submodule foreach 'git stash'

Entering 'CryptoLibrary'

No local changes to save

Entering 'DbConnector'

Saved working directory and index state WIP on stable: 82d2ad3 Merge

from origin/stable

HEAD is now at 82d2ad3 Merge from origin/stable

Then we can create a new branch and switch to it in all our submodules.

$ git submodule foreach 'git checkout -b featureA'

Entering 'CryptoLibrary'

Switched to a new branch 'featureA'

Entering 'DbConnector'

Switched to a new branch 'featureA'

You get the idea. One really useful thing you can do is produce a nice unified diff of what is changed in
your main project and all your subprojects as well.

290

$ git diff; git submodule foreach 'git diff'

Submodule DbConnector contains modified content

diff --git a/src/main.c b/src/main.c

index 210f1ae..1f0acdc 100644

--- a/src/main.c

+++ b/src/main.c

@@ -245,6 +245,8 @@ static int handle_alias(int *argcp, const char

***argv)

 commit_pager_choice();

+ url = url_decode(url_orig);

+

 /* build alias_argv */

 alias_argv = xmalloc(sizeof(*alias_argv) * (argc + 1));

 alias_argv[0] = alias_string + 1;

Entering 'DbConnector'

diff --git a/src/db.c b/src/db.c

index 1aaefb6..5297645 100644

--- a/src/db.c

+++ b/src/db.c

@@ -93,6 +93,11 @@ char *url_decode_mem(const char *url, int len)

 return url_decode_internal(&url, len, NULL, &out, 0);

 }

+char *url_decode(const char *url)

+{

+ return url_decode_mem(url, strlen(url));

+}

+

 char *url_decode_parameter_name(const char **query)

 {

 struct strbuf out = STRBUF_INIT;

Here we can see that we’re defining a function in a submodule and calling it in the main project. This
is obviously a simplified example, but hopefully it gives you an idea of how this may be useful.

Useful Aliases

You may want to set up some aliases for some of these commands as they can be quite long and you
can’t set configuration options for most of them to make them defaults. We covered setting up Git
aliases in Git Aliases, but here is an example of what you may want to set up if you plan on working
with submodules in Git a lot.

$ git config alias.sdiff '!'"git diff && git submodule foreach 'git

diff'"

$ git config alias.spush 'push --recurse-submodules=on-demand'

$ git config alias.supdate 'submodule update --remote --merge'

This way you can simply run git supdate when you want to update your submodules, or git spush

291

to push with submodule dependency checking.

Issues with Submodules
Using submodules isn’t without hiccups, however.

For instance switching branches with submodules in them can also be tricky. If you create a new
branch, add a submodule there, and then switch back to a branch without that submodule, you still
have the submodule directory as an untracked directory:

$ git checkout -b add-crypto

Switched to a new branch 'add-crypto'

$ git submodule add https://github.com/chaconinc/CryptoLibrary

Cloning into 'CryptoLibrary'...

...

$ git commit -am 'adding crypto library'

[add-crypto 4445836] adding crypto library

 2 files changed, 4 insertions(+)

 create mode 160000 CryptoLibrary

$ git checkout master

warning: unable to rmdir CryptoLibrary: Directory not empty

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 CryptoLibrary/

nothing added to commit but untracked files present (use "git add" to

track)

Removing the directory isn’t difficult, but it can be a bit confusing to have that in there. If you do
remove it and then switch back to the branch that has that submodule, you will need to run
submodule update --init to repopulate it.

292

$ git clean -fdx

Removing CryptoLibrary/

$ git checkout add-crypto

Switched to branch 'add-crypto'

$ ls CryptoLibrary/

$ git submodule update --init

Submodule path 'CryptoLibrary': checked out

'b8dda6aa182ea4464f3f3264b11e0268545172af'

$ ls CryptoLibrary/

Makefile includes scripts src

Again, not really very difficult, but it can be a little confusing.

The other main caveat that many people run into involves switching from subdirectories to
submodules. If you’ve been tracking files in your project and you want to move them out into a
submodule, you must be careful or Git will get angry at you. Assume that you have files in a
subdirectory of your project, and you want to switch it to a submodule. If you delete the subdirectory
and then run submodule add, Git yells at you:

$ rm -Rf CryptoLibrary/

$ git submodule add https://github.com/chaconinc/CryptoLibrary

'CryptoLibrary' already exists in the index

You have to unstage the CryptoLibrary directory first. Then you can add the submodule:

$ git rm -r CryptoLibrary

$ git submodule add https://github.com/chaconinc/CryptoLibrary

Cloning into 'CryptoLibrary'...

remote: Counting objects: 11, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 11 (delta 0), reused 11 (delta 0)

Unpacking objects: 100% (11/11), done.

Checking connectivity... done.

Now suppose you did that in a branch. If you try to switch back to a branch where those files are still in
the actual tree rather than a submodule – you get this error:

293

$ git checkout master

error: The following untracked working tree files would be overwritten

by checkout:

 CryptoLibrary/Makefile

 CryptoLibrary/includes/crypto.h

 ...

Please move or remove them before you can switch branches.

Aborting

You can force it to switch with checkout -f, but be careful that you don’t have unsaved changes in
there as they could be overwritten with that command.

$ git checkout -f master

warning: unable to rmdir CryptoLibrary: Directory not empty

Switched to branch 'master'

Then, when you switch back, you get an empty CryptoLibrary directory for some reason and git
submodule update may not fix it either. You may need to go into your submodule directory and run a
git checkout . to get all your files back. You could run this in a submodule foreach script to run it
for multiple submodules.

It’s important to note that submodules these days keep all their Git data in the top project’s .git
directory, so unlike much older versions of Git, destroying a submodule directory won’t lose any
commits or branches that you had.

With these tools, submodules can be a fairly simple and effective method for developing on several
related but still separate projects simultaneously.

Bundling
Though we’ve covered the common ways to transfer Git data over a network (HTTP, SSH, etc), there
is actually one more way to do so that is not commonly used but can actually be quite useful.

Git is capable of “bundling” its data into a single file. This can be useful in various scenarios. Maybe
your network is down and you want to send changes to your co-workers. Perhaps you’re working
somewhere offsite and don’t have access to the local network for security reasons. Maybe your
wireless/ethernet card just broke. Maybe you don’t have access to a shared server for the moment,
you want to email someone updates and you don’t want to transfer 40 commits via format-patch.

This is where the git bundle command can be helpful. The bundle command will package up
everything that would normally be pushed over the wire with a git push command into a binary file
that you can email to someone or put on a flash drive, then unbundle into another repository.

Let’s see a simple example. Let’s say you have a repository with two commits:

294

$ git log

commit 9a466c572fe88b195efd356c3f2bbeccdb504102

Author: Scott Chacon <schacon@gmail.com>

Date: Wed Mar 10 07:34:10 2010 -0800

 second commit

commit b1ec3248f39900d2a406049d762aa68e9641be25

Author: Scott Chacon <schacon@gmail.com>

Date: Wed Mar 10 07:34:01 2010 -0800

 first commit

If you want to send that repository to someone and you don’t have access to a repository to push to,
or simply don’t want to set one up, you can bundle it with git bundle create.

$ git bundle create repo.bundle HEAD master

Counting objects: 6, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (6/6), 441 bytes, done.

Total 6 (delta 0), reused 0 (delta 0)

Now you have a file named repo.bundle that has all the data needed to re-create the repository’s
master branch. With the bundle command you need to list out every reference or specific range of
commits that you want to be included. If you intend for this to be cloned somewhere else, you should
add HEAD as a reference as well as we’ve done here.

You can email this repo.bundle file to someone else, or put it on a USB drive and walk it over.

On the other side, say you are sent this repo.bundle file and want to work on the project. You can
clone from the binary file into a directory, much like you would from a URL.

$ git clone repo.bundle repo

Cloning into 'repo'...

...

$ cd repo

$ git log --oneline

9a466c5 second commit

b1ec324 first commit

If you don’t include HEAD in the references, you have to also specify -b master or whatever branch
is included because otherwise it won’t know what branch to check out.

Now let’s say you do three commits on it and want to send the new commits back via a bundle on a
USB stick or email.

295

$ git log --oneline

71b84da last commit - second repo

c99cf5b fourth commit - second repo

7011d3d third commit - second repo

9a466c5 second commit

b1ec324 first commit

First we need to determine the range of commits we want to include in the bundle. Unlike the network
protocols which figure out the minimum set of data to transfer over the network for us, we’ll have to
figure this out manually. Now, you could just do the same thing and bundle the entire repository,
which will work, but it’s better to just bundle up the difference - just the three commits we just made
locally.

In order to do that, you’ll have to calculate the difference. As we described in Commit Ranges, you
can specify a range of commits in a number of ways. To get the three commits that we have in our
master branch that weren’t in the branch we originally cloned, we can use something like
origin/master..master or master ^origin/master. You can test that with the log command.

$ git log --oneline master ^origin/master

71b84da last commit - second repo

c99cf5b fourth commit - second repo

7011d3d third commit - second repo

So now that we have the list of commits we want to include in the bundle, let’s bundle them up. We
do that with the git bundle create command, giving it a filename we want our bundle to be and
the range of commits we want to go into it.

$ git bundle create commits.bundle master ^9a466c5

Counting objects: 11, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (9/9), 775 bytes, done.

Total 9 (delta 0), reused 0 (delta 0)

Now we have a commits.bundle file in our directory. If we take that and send it to our partner, she
can then import it into the original repository, even if more work has been done there in the
meantime.

When she gets the bundle, she can inspect it to see what it contains before she imports it into her
repository. The first command is the bundle verify command that will make sure the file is actually
a valid Git bundle and that you have all the necessary ancestors to reconstitute it properly.

296

$ git bundle verify ../commits.bundle

The bundle contains 1 ref

71b84daaf49abed142a373b6e5c59a22dc6560dc refs/heads/master

The bundle requires these 1 ref

9a466c572fe88b195efd356c3f2bbeccdb504102 second commit

../commits.bundle is okay

If the bundler had created a bundle of just the last two commits they had done, rather than all three,
the original repository would not be able to import it, since it is missing requisite history. The verify
command would have looked like this instead:

$ git bundle verify ../commits-bad.bundle

error: Repository lacks these prerequisite commits:

error: 7011d3d8fc200abe0ad561c011c3852a4b7bbe95 third commit - second

repo

However, our first bundle is valid, so we can fetch in commits from it. If you want to see what branches
are in the bundle that can be imported, there is also a command to just list the heads:

$ git bundle list-heads ../commits.bundle

71b84daaf49abed142a373b6e5c59a22dc6560dc refs/heads/master

The verify sub-command will tell you the heads as well. The point is to see what can be pulled in, so
you can use the fetch or pull commands to import commits from this bundle. Here we’ll fetch the
master branch of the bundle to a branch named other-master in our repository:

$ git fetch ../commits.bundle master:other-master

From ../commits.bundle

 * [new branch] master -> other-master

Now we can see that we have the imported commits on the other-master branch as well as any
commits we’ve done in the meantime in our own master branch.

$ git log --oneline --decorate --graph --all

* 8255d41 (HEAD, master) third commit - first repo

| * 71b84da (other-master) last commit - second repo

| * c99cf5b fourth commit - second repo

| * 7011d3d third commit - second repo

|/

* 9a466c5 second commit

* b1ec324 first commit

So, git bundle can be really useful for sharing or doing network-type operations when you don’t
have the proper network or shared repository to do so.

297

Replace
Git’s objects are unchangeable, but it does provide an interesting way to pretend to replace objects
in its database with other objects.

The replace command lets you specify an object in Git and say "every time you see this, pretend it’s
this other thing". This is most commonly useful for replacing one commit in your history with another
one.

For example, let’s say you have a huge code history and want to split your repository into one short
history for new developers and one much longer and larger history for people interested in data
mining. You can graft one history onto the other by `replace`ing the earliest commit in the new line
with the latest commit on the older one. This is nice because it means that you don’t actually have to
rewrite every commit in the new history, as you would normally have to do to join them together
(because the parentage affects the SHA-1s).

Let’s try this out. Let’s take an existing repository, split it into two repositories, one recent and one
historical, and then we’ll see how we can recombine them without modifying the recent repositories
SHA-1 values via replace.

We’ll use a simple repository with five simple commits:

$ git log --oneline

ef989d8 fifth commit

c6e1e95 fourth commit

9c68fdc third commit

945704c second commit

c1822cf first commit

We want to break this up into two lines of history. One line goes from commit one to commit four - that
will be the historical one. The second line will just be commits four and five - that will be the recent
history.

298

Well, creating the historical history is easy, we can just put a branch in the history and then push that
branch to the master branch of a new remote repository.

$ git branch history c6e1e95

$ git log --oneline --decorate

ef989d8 (HEAD, master) fifth commit

c6e1e95 (history) fourth commit

9c68fdc third commit

945704c second commit

c1822cf first commit

299

Now we can push the new history branch to the master branch of our new repository:

$ git remote add project-history https://github.com/schacon/project-

history

$ git push project-history history:master

Counting objects: 12, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (12/12), 907 bytes, done.

Total 12 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (12/12), done.

To git@github.com:schacon/project-history.git

 * [new branch] history -> master

OK, so our history is published. Now the harder part is truncating our recent history down so it’s

300

smaller. We need an overlap so we can replace a commit in one with an equivalent commit in the
other, so we’re going to truncate this to just commits four and five (so commit four overlaps).

$ git log --oneline --decorate

ef989d8 (HEAD, master) fifth commit

c6e1e95 (history) fourth commit

9c68fdc third commit

945704c second commit

c1822cf first commit

It’s useful in this case to create a base commit that has instructions on how to expand the history, so
other developers know what to do if they hit the first commit in the truncated history and need more.
So, what we’re going to do is create an initial commit object as our base point with instructions, then
rebase the remaining commits (four and five) on top of it.

To do that, we need to choose a point to split at, which for us is the third commit, which is 9c68fdc in
SHA-speak. So, our base commit will be based off of that tree. We can create our base commit using
the commit-tree command, which just takes a tree and will give us a brand new, parentless commit
object SHA-1 back.

$ echo 'get history from blah blah blah' | git commit-tree

9c68fdc^{tree}

622e88e9cbfbacfb75b5279245b9fb38dfea10cf

筆記

The commit-tree command is one of a set of commands that are commonly referred to
as plumbing commands. These are commands that are not generally meant to be used
directly, but instead are used by other Git commands to do smaller jobs. On occasions
when we’re doing weirder things like this, they allow us to do really low-level things
but are not meant for daily use. You can read more about plumbing commands in
Plumbing and Porcelain

301

OK, so now that we have a base commit, we can rebase the rest of our history on top of that with git
rebase --onto. The --onto argument will be the SHA-1 we just got back from commit-tree and
the rebase point will be the third commit (the parent of the first commit we want to keep, 9c68fdc):

$ git rebase --onto 622e88 9c68fdc

First, rewinding head to replay your work on top of it...

Applying: fourth commit

Applying: fifth commit

302

OK, so now we’ve re-written our recent history on top of a throw away base commit that now has
instructions in it on how to reconstitute the entire history if we wanted to. We can push that new
history to a new project and now when people clone that repository, they will only see the most recent
two commits and then a base commit with instructions.

Let’s now switch roles to someone cloning the project for the first time who wants the entire history.
To get the history data after cloning this truncated repository, one would have to add a second remote
for the historical repository and fetch:

303

$ git clone https://github.com/schacon/project

$ cd project

$ git log --oneline master

e146b5f fifth commit

81a708d fourth commit

622e88e get history from blah blah blah

$ git remote add project-history https://github.com/schacon/project-

history

$ git fetch project-history

From https://github.com/schacon/project-history

 * [new branch] master -> project-history/master

Now the collaborator would have their recent commits in the master branch and the historical
commits in the project-history/master branch.

$ git log --oneline master

e146b5f fifth commit

81a708d fourth commit

622e88e get history from blah blah blah

$ git log --oneline project-history/master

c6e1e95 fourth commit

9c68fdc third commit

945704c second commit

c1822cf first commit

To combine them, you can simply call git replace with the commit you want to replace and then
the commit you want to replace it with. So we want to replace the "fourth" commit in the master
branch with the "fourth" commit in the project-history/master branch:

$ git replace 81a708d c6e1e95

Now, if you look at the history of the master branch, it appears to look like this:

$ git log --oneline master

e146b5f fifth commit

81a708d fourth commit

9c68fdc third commit

945704c second commit

c1822cf first commit

Cool, right? Without having to change all the SHA-1s upstream, we were able to replace one commit in
our history with an entirely different commit and all the normal tools (bisect, blame, etc) will work
how we would expect them to.

304

Interestingly, it still shows 81a708d as the SHA-1, even though it’s actually using the c6e1e95
commit data that we replaced it with. Even if you run a command like cat-file, it will show you the
replaced data:

$ git cat-file -p 81a708d

tree 7bc544cf438903b65ca9104a1e30345eee6c083d

parent 9c68fdceee073230f19ebb8b5e7fc71b479c0252

author Scott Chacon <schacon@gmail.com> 1268712581 -0700

committer Scott Chacon <schacon@gmail.com> 1268712581 -0700

fourth commit

Remember that the actual parent of 81a708d was our placeholder commit (622e88e), not 9c68fdce
as it states here.

Another interesting thing is that this data is kept in our references:

305

$ git for-each-ref

e146b5f14e79d4935160c0e83fb9ebe526b8da0d commit refs/heads/master

c6e1e95051d41771a649f3145423f8809d1a74d4 commit

refs/remotes/history/master

e146b5f14e79d4935160c0e83fb9ebe526b8da0d commit refs/remotes/origin/HEAD

e146b5f14e79d4935160c0e83fb9ebe526b8da0d commit

refs/remotes/origin/master

c6e1e95051d41771a649f3145423f8809d1a74d4 commit

refs/replace/81a708dd0e167a3f691541c7a6463343bc457040

This means that it’s easy to share our replacement with others, because we can push this to our
server and other people can easily download it. This is not that helpful in the history grafting scenario
we’ve gone over here (since everyone would be downloading both histories anyhow, so why separate
them?) but it can be useful in other circumstances.

Credential Storage
 If you use the SSH transport for connecting to remotes, it’s possible for you to have a key without a
passphrase, which allows you to securely transfer data without typing in your username and
password. However, this isn’t possible with the HTTP protocols – every connection needs a
username and password. This gets even harder for systems with two-factor authentication, where the
token you use for a password is randomly generated and unpronounceable.

Fortunately, Git has a credentials system that can help with this. Git has a few options provided in the
box:

• The default is not to cache at all. Every connection will prompt you for your username and
password.

• The “cache” mode keeps credentials in memory for a certain period of time. None of the
passwords are ever stored on disk, and they are purged from the cache after 15 minutes.

• The “store” mode saves the credentials to a plain-text file on disk, and they never expire. This
means that until you change your password for the Git host, you won’t ever have to type in your
credentials again. The downside of this approach is that your passwords are stored in cleartext in
a plain file in your home directory.

• If you’re using a Mac, Git comes with an “osxkeychain” mode, which caches credentials in the
secure keychain that’s attached to your system account. This method stores the credentials on
disk, and they never expire, but they’re encrypted with the same system that stores HTTPS
certificates and Safari auto-fills.

• If you’re using Windows, you can install a helper called “wincred.” This is similar to the
“osxkeychain” helper described above, but uses the Windows Credential Store to control
sensitive information.

You can choose one of these methods by setting a Git configuration value:

$ git config --global credential.helper cache

306

Some of these helpers have options. The “store” helper can take a --file <path> argument,
which customizes where the plain-text file is saved (the default is ~/.git-credentials). The
“cache” helper accepts the --timeout <seconds> option, which changes the amount of time its
daemon is kept running (the default is “900”, or 15 minutes). Here’s an example of how you’d
configure the “store” helper with a custom file name:

$ git config --global credential.helper 'store --file ~/.my-credentials'

Git even allows you to configure several helpers. When looking for credentials for a particular host, Git
will query them in order, and stop after the first answer is provided. When saving credentials, Git will
send the username and password to all of the helpers in the list, and they can choose what to do with
them. Here’s what a .gitconfig would look like if you had a credentials file on a thumb drive, but
wanted to use the in-memory cache to save some typing if the drive isn’t plugged in:

[credential]

 helper = store --file /mnt/thumbdrive/.git-credentials

 helper = cache --timeout 30000

Under the Hood
How does this all work? Git’s root command for the credential-helper system is git credential,
which takes a command as an argument, and then more input through stdin.

This might be easier to understand with an example. Let’s say that a credential helper has been
configured, and the helper has stored credentials for mygithost. Here’s a session that uses the
“fill” command, which is invoked when Git is trying to find credentials for a host:

$ git credential fill ①
protocol=https ②
host=mygithost
③
protocol=https ④
host=mygithost

username=bob

password=s3cre7

$ git credential fill ⑤
protocol=https

host=unknownhost

Username for 'https://unknownhost': bob

Password for 'https://bob@unknownhost':

protocol=https

host=unknownhost

username=bob

password=s3cre7

① This is the command line that initiates the interaction.

307

② Git-credential is then waiting for input on stdin. We provide it with the things we know: the
protocol and hostname.

③ A blank line indicates that the input is complete, and the credential system should answer with
what it knows.

④ Git-credential then takes over, and writes to stdout with the bits of information it found.
⑤ If credentials are not found, Git asks the user for the username and password, and provides them

back to the invoking stdout (here they’re attached to the same console).

The credential system is actually invoking a program that’s separate from Git itself; which one and
how depends on the credential.helper configuration value. There are several forms it can take:

Configuration Value Behavior
foo Runs git-credential-foo
foo -a --opt=bcd Runs git-credential-foo -a --opt=bcd
/absolute/path/foo -xyz Runs /absolute/path/foo -xyz
!f() { echo "password=s3cre7"; }; f Code after ! evaluated in shell

So the helpers described above are actually named git-credential-cache, git-credential-
store, and so on, and we can configure them to take command-line arguments. The general form for
this is “git-credential-foo [args] <action>.” The stdin/stdout protocol is the same as git-credential,
but they use a slightly different set of actions:

• get is a request for a username/password pair.

• store is a request to save a set of credentials in this helper’s memory.

• erase purge the credentials for the given properties from this helper’s memory.

For the store and erase actions, no response is required (Git ignores it anyway). For the get action,
however, Git is very interested in what the helper has to say. If the helper doesn’t know anything
useful, it can simply exit with no output, but if it does know, it should augment the provided
information with the information it has stored. The output is treated like a series of assignment
statements; anything provided will replace what Git already knows.

Here’s the same example from above, but skipping git-credential and going straight for git-
credential-store:

$ git credential-store --file ~/git.store store ①
protocol=https

host=mygithost

username=bob

password=s3cre7

$ git credential-store --file ~/git.store get ②
protocol=https

host=mygithost

username=bob ③
password=s3cre7

308

① Here we tell git-credential-store to save some credentials: the username “bob” and the
password “s3cre7” are to be used when https://mygithost is accessed.

② Now we’ll retrieve those credentials. We provide the parts of the connection we already know
(https://mygithost), and an empty line.

③ git-credential-store replies with the username and password we stored above.

Here’s what the ~/git.store file looks like:

https://bob:s3cre7@mygithost

It’s just a series of lines, each of which contains a credential-decorated URL. The osxkeychain and
wincred helpers use the native format of their backing stores, while cache uses its own in-memory
format (which no other process can read).

A Custom Credential Cache
Given that git-credential-store and friends are separate programs from Git, it’s not much of a
leap to realize that any program can be a Git credential helper. The helpers provided by Git cover many
common use cases, but not all. For example, let’s say your team has some credentials that are
shared with the entire team, perhaps for deployment. These are stored in a shared directory, but you
don’t want to copy them to your own credential store, because they change often. None of the
existing helpers cover this case; let’s see what it would take to write our own. There are several key
features this program needs to have:

1. The only action we need to pay attention to is get; store and erase are write operations, so
we’ll just exit cleanly when they’re received.

2. The file format of the shared-credential file is the same as that used by git-credential-store.

3. The location of that file is fairly standard, but we should allow the user to pass a custom path just
in case.

Once again, we’ll write this extension in Ruby, but any language will work so long as Git can execute
the finished product. Here’s the full source code of our new credential helper:

309

#!/usr/bin/env ruby

require 'optparse'

path = File.expand_path '~/.git-credentials' ①
OptionParser.new do |opts|

 opts.banner = 'USAGE: git-credential-read-only [options] <action>'

 opts.on('-f', '--file PATH', 'Specify path for backing store') do

|argpath|

 path = File.expand_path argpath

 end

end.parse!

exit(0) unless ARGV[0].downcase == 'get' ②
exit(0) unless File.exists? path

known = {} ③
while line = STDIN.gets

 break if line.strip == ''

 k,v = line.strip.split '=', 2

 known[k] = v

end

File.readlines(path).each do |fileline| ④
 prot,user,pass,host =

fileline.scan(/^(.*?):\/\/(.*?):(.*?)@(.*)$/).first

 if prot == known['protocol'] and host == known['host'] and user ==

known['username'] then

 puts "protocol=#{prot}"

 puts "host=#{host}"

 puts "username=#{user}"

 puts "password=#{pass}"

 exit(0)

 end

end

① Here we parse the command-line options, allowing the user to specify the input file. The default is
~/.git-credentials.

② This program only responds if the action is get and the backing-store file exists.

③ This loop reads from stdin until the first blank line is reached. The inputs are stored in the known
hash for later reference.

④ This loop reads the contents of the storage file, looking for matches. If the protocol and host from
known match this line, the program prints the results to stdout and exits.

We’ll save our helper as git-credential-read-only, put it somewhere in our PATH and mark it
executable. Here’s what an interactive session looks like:

310

$ git credential-read-only --file=/mnt/shared/creds get

protocol=https

host=mygithost

protocol=https

host=mygithost

username=bob

password=s3cre7

Since its name starts with “git-”, we can use the simple syntax for the configuration value:

$ git config --global credential.helper 'read-only --file

/mnt/shared/creds'

As you can see, extending this system is pretty straightforward, and can solve some common problems
for you and your team.

Summary
You’ve seen a number of advanced tools that allow you to manipulate your commits and staging area
more precisely. When you notice issues, you should be able to easily figure out what commit
introduced them, when, and by whom. If you want to use subprojects in your project, you’ve learned
how to accommodate those needs. At this point, you should be able to do most of the things in Git that
you’ll need on the command line day to day and feel comfortable doing so.

311

Customizing Git
So far, we’ve covered the basics of how Git works and how to use it, and we’ve introduced a
number of tools that Git provides to help you use it easily and efficiently. In this chapter, we’ll see
how you can make Git operate in a more customized fashion, by introducing several important
configuration settings and the hooks system. With these tools, it’s easy to get Git to work exactly the
way you, your company, or your group needs it to.

Git Configuration
 As you briefly saw in 開始, you can specify Git configuration settings with the git config command.
One of the first things you did was set up your name and email address:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Now you’ll learn a few of the more interesting options that you can set in this manner to customize
your Git usage.

First, a quick review: Git uses a series of configuration files to determine non-default behavior that you
may want. The first place Git looks for these values is in an /etc/gitconfig file, which contains
values for every user on the system and all of their repositories. If you pass the option --system to
git config, it reads and writes from this file specifically.

The next place Git looks is the ~/.gitconfig (or ~/.config/git/config) file, which is specific to
each user. You can make Git read and write to this file by passing the --global option.

Finally, Git looks for configuration values in the configuration file in the Git directory (.git/config) of
whatever repository you’re currently using. These values are specific to that single repository.

Each of these “levels” (system, global, local) overwrites values in the previous level, so values in
.git/config trump those in /etc/gitconfig, for instance.

筆記
Git’s configuration files are plain-text, so you can also set these values by manually
editing the file and inserting the correct syntax. It’s generally easier to run the git
config command, though.

Basic Client Configuration
The configuration options recognized by Git fall into two categories: client-side and server-side. The
majority of the options are client-side – configuring your personal working preferences. Many, many
configuration options are supported, but a large fraction of them are only useful in certain edge cases.
We’ll only be covering the most common and most useful here. If you want to see a list of all the
options your version of Git recognizes, you can run

$ man git-config

312

This command lists all the available options in quite a bit of detail. You can also find this reference
material at http://git-scm.com/docs/git-config.html.

core.editor

 By default, Git uses whatever you’ve set as your default text editor ($VISUAL or $EDITOR) or else
falls back to the vi editor to create and edit your commit and tag messages. To change that default to
something else, you can use the core.editor setting:

$ git config --global core.editor emacs

Now, no matter what is set as your default shell editor, Git will fire up Emacs to edit messages.

commit.template

 If you set this to the path of a file on your system, Git will use that file as the default message when
you commit. For instance, suppose you create a template file at ~/.gitmessage.txt that looks like
this:

subject line

what happened

[ticket: X]

To tell Git to use it as the default message that appears in your editor when you run git commit, set
the commit.template configuration value:

$ git config --global commit.template ~/.gitmessage.txt

$ git commit

Then, your editor will open to something like this for your placeholder commit message when you
commit:

313

http://git-scm.com/docs/git-config.html

subject line

what happened

[ticket: X]

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: lib/test.rb

#

~

~

".git/COMMIT_EDITMSG" 14L, 297C

If your team has a commit-message policy, then putting a template for that policy on your system and
configuring Git to use it by default can help increase the chance of that policy being followed regularly.

core.pager

 This setting determines which pager is used when Git pages output such as log and diff. You can set
it to more or to your favorite pager (by default, it’s less), or you can turn it off by setting it to a blank
string:

$ git config --global core.pager ''

If you run that, Git will page the entire output of all commands, no matter how long they are.

user.signingkey

 If you’re making signed annotated tags (as discussed in Signing Your Work), setting your GPG
signing key as a configuration setting makes things easier. Set your key ID like so:

$ git config --global user.signingkey <gpg-key-id>

Now, you can sign tags without having to specify your key every time with the git tag command:

$ git tag -s <tag-name>

core.excludesfile

 You can put patterns in your project’s .gitignore file to have Git not see them as untracked files
or try to stage them when you run git add on them, as discussed in 忽略不需要的檔案.

But sometimes you want to ignore certain files for all repositories that you work with. If your computer

314

is running Mac OS X, you’re probably familiar with .DS_Store files. If your preferred editor is Emacs
or Vim, you know about filenames that end with a ~ or .swp.

This setting lets you write a kind of global .gitignore file. If you create a ~/.gitignore_global file
with these contents:

*~

.*.swp

.DS_Store

…and you run git config --global core.excludesfile ~/.gitignore_global, Git will
never again bother you about those files.

help.autocorrect

 If you mistype a command, it shows you something like this:

$ git chekcout master

git: 'chekcout' is not a git command. See 'git --help'.

Did you mean this?

 checkout

Git helpfully tries to figure out what you meant, but it still refuses to do it. If you set
help.autocorrect to 1, Git will actually run this command for you:

$ git chekcout master

WARNING: You called a Git command named 'chekcout', which does not

exist.

Continuing under the assumption that you meant 'checkout'

in 0.1 seconds automatically...

Note that “0.1 seconds” business. help.autocorrect is actually an integer which represents
tenths of a second. So if you set it to 50, Git will give you 5 seconds to change your mind before
executing the autocorrected command.

Colors in Git
 Git fully supports colored terminal output, which greatly aids in visually parsing command output
quickly and easily. A number of options can help you set the coloring to your preference.

color.ui

Git automatically colors most of its output, but there’s a master switch if you don’t like this
behavior. To turn off all Git’s colored terminal output, do this:

$ git config --global color.ui false

315

The default setting is auto, which colors output when it’s going straight to a terminal, but omits the
color-control codes when the output is redirected to a pipe or a file.

You can also set it to always to ignore the difference between terminals and pipes. You’ll rarely want
this; in most scenarios, if you want color codes in your redirected output, you can instead pass a
--color flag to the Git command to force it to use color codes. The default setting is almost always
what you’ll want.

color.*

If you want to be more specific about which commands are colored and how, Git provides verb-
specific coloring settings. Each of these can be set to true, false, or always:

color.branch

color.diff

color.interactive

color.status

In addition, each of these has subsettings you can use to set specific colors for parts of the output, if
you want to override each color. For example, to set the meta information in your diff output to blue
foreground, black background, and bold text, you can run

$ git config --global color.diff.meta "blue black bold"

You can set the color to any of the following values: normal, black, red, green, yellow, blue,
magenta, cyan, or white. If you want an attribute like bold in the previous example, you can choose
from bold, dim, ul (underline), blink, and reverse (swap foreground and background).

External Merge and Diff Tools
 Although Git has an internal implementation of diff, which is what we’ve been showing in this book,

you can set up an external tool instead. You can also set up a graphical merge-conflict-resolution tool
instead of having to resolve conflicts manually. We’ll demonstrate setting up the Perforce Visual
Merge Tool (P4Merge) to do your diffs and merge resolutions, because it’s a nice graphical tool and
it’s free.

If you want to try this out, P4Merge works on all major platforms, so you should be able to do so.
We’ll use path names in the examples that work on Mac and Linux systems; for Windows, you’ll
have to change /usr/local/bin to an executable path in your environment.

To begin, download P4Merge from Perforce. Next, you’ll set up external wrapper scripts to run your
commands. We’ll use the Mac path for the executable; in other systems, it will be where your
p4merge binary is installed. Set up a merge wrapper script named extMerge that calls your binary
with all the arguments provided:

316

https://www.perforce.com/product/components/perforce-visual-merge-and-diff-tools

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/p4merge.app/Contents/MacOS/p4merge $*

The diff wrapper checks to make sure seven arguments are provided and passes two of them to your
merge script. By default, Git passes the following arguments to the diff program:

path old-file old-hex old-mode new-file new-hex new-mode

Because you only want the old-file and new-file arguments, you use the wrapper script to pass
the ones you need.

$ cat /usr/local/bin/extDiff

#!/bin/sh

[$# -eq 7] && /usr/local/bin/extMerge "$2" "$5"

You also need to make sure these tools are executable:

$ sudo chmod +x /usr/local/bin/extMerge

$ sudo chmod +x /usr/local/bin/extDiff

Now you can set up your config file to use your custom merge resolution and diff tools. This takes a
number of custom settings: merge.tool to tell Git what strategy to use, mergetool.<tool>.cmd to
specify how to run the command, mergetool.<tool>.trustExitCode to tell Git if the exit code of
that program indicates a successful merge resolution or not, and diff.external to tell Git what
command to run for diffs. So, you can either run four config commands

$ git config --global merge.tool extMerge

$ git config --global mergetool.extMerge.cmd \

 'extMerge \"$BASE\" \"$LOCAL\" \"$REMOTE\" \"$MERGED\"'

$ git config --global mergetool.extMerge.trustExitCode false

$ git config --global diff.external extDiff

or you can edit your ~/.gitconfig file to add these lines:

[merge]

 tool = extMerge

[mergetool "extMerge"]

 cmd = extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"

 trustExitCode = false

[diff]

 external = extDiff

After all this is set, if you run diff commands such as this:

317

$ git diff 32d1776b1^ 32d1776b1

Instead of getting the diff output on the command line, Git fires up P4Merge, which looks something
like this:

圖表 142. P4Merge.

If you try to merge two branches and subsequently have merge conflicts, you can run the command
git mergetool; it starts P4Merge to let you resolve the conflicts through that GUI tool.

The nice thing about this wrapper setup is that you can change your diff and merge tools easily. For
example, to change your extDiff and extMerge tools to run the KDiff3 tool instead, all you have to
do is edit your extMerge file:

$ cat /usr/local/bin/extMerge

#!/bin/sh

/Applications/kdiff3.app/Contents/MacOS/kdiff3 $*

Now, Git will use the KDiff3 tool for diff viewing and merge conflict resolution.

Git comes preset to use a number of other merge-resolution tools without your having to set up the
cmd configuration. To see a list of the tools it supports, try this:

318

$ git mergetool --tool-help

'git mergetool --tool=<tool>' may be set to one of the following:

 emerge

 gvimdiff

 gvimdiff2

 opendiff

 p4merge

 vimdiff

 vimdiff2

The following tools are valid, but not currently available:

 araxis

 bc3

 codecompare

 deltawalker

 diffmerge

 diffuse

 ecmerge

 kdiff3

 meld

 tkdiff

 tortoisemerge

 xxdiff

Some of the tools listed above only work in a windowed

environment. If run in a terminal-only session, they will fail.

If you’re not interested in using KDiff3 for diff but rather want to use it just for merge resolution, and
the kdiff3 command is in your path, then you can run

$ git config --global merge.tool kdiff3

If you run this instead of setting up the extMerge and extDiff files, Git will use KDiff3 for merge
resolution and the normal Git diff tool for diffs.

Formatting and Whitespace
 Formatting and whitespace issues are some of the more frustrating and subtle problems that many
developers encounter when collaborating, especially cross-platform. It’s very easy for patches or
other collaborated work to introduce subtle whitespace changes because editors silently introduce
them, and if your files ever touch a Windows system, their line endings might be replaced. Git has a
few configuration options to help with these issues.

core.autocrlf

 If you’re programming on Windows and working with people who are not (or vice-versa), you’ll
probably run into line-ending issues at some point. This is because Windows uses both a carriage-
return character and a linefeed character for newlines in its files, whereas Mac and Linux systems use
only the linefeed character. This is a subtle but incredibly annoying fact of cross-platform work; many
editors on Windows silently replace existing LF-style line endings with CRLF, or insert both line-ending

319

characters when the user hits the enter key.

Git can handle this by auto-converting CRLF line endings into LF when you add a file to the index, and
vice versa when it checks out code onto your filesystem. You can turn on this functionality with the
core.autocrlf setting. If you’re on a Windows machine, set it to true – this converts LF endings
into CRLF when you check out code:

$ git config --global core.autocrlf true

If you’re on a Linux or Mac system that uses LF line endings, then you don’t want Git to
automatically convert them when you check out files; however, if a file with CRLF endings accidentally
gets introduced, then you may want Git to fix it. You can tell Git to convert CRLF to LF on commit but
not the other way around by setting core.autocrlf to input:

$ git config --global core.autocrlf input

This setup should leave you with CRLF endings in Windows checkouts, but LF endings on Mac and
Linux systems and in the repository.

If you’re a Windows programmer doing a Windows-only project, then you can turn off this
functionality, recording the carriage returns in the repository by setting the config value to false:

$ git config --global core.autocrlf false

core.whitespace

Git comes preset to detect and fix some whitespace issues. It can look for six primary whitespace
issues – three are enabled by default and can be turned off, and three are disabled by default but can
be activated.

The three that are turned on by default are blank-at-eol, which looks for spaces at the end of a line;
blank-at-eof, which notices blank lines at the end of a file; and space-before-tab, which looks
for spaces before tabs at the beginning of a line.

The three that are disabled by default but can be turned on are indent-with-non-tab, which looks
for lines that begin with spaces instead of tabs (and is controlled by the tabwidth option); tab-in-
indent, which watches for tabs in the indentation portion of a line; and cr-at-eol, which tells Git
that carriage returns at the end of lines are OK.

You can tell Git which of these you want enabled by setting core.whitespace to the values you want
on or off, separated by commas. You can disable settings by either leaving them out of the setting
string or prepending a - in front of the value. For example, if you want all but cr-at-eol to be set,
you can do this:

$ git config --global core.whitespace \

 trailing-space,space-before-tab,indent-with-non-tab

320

Git will detect these issues when you run a git diff command and try to color them so you can
possibly fix them before you commit. It will also use these values to help you when you apply patches
with git apply. When you’re applying patches, you can ask Git to warn you if it’s applying patches
with the specified whitespace issues:

$ git apply --whitespace=warn <patch>

Or you can have Git try to automatically fix the issue before applying the patch:

$ git apply --whitespace=fix <patch>

These options apply to the git rebase command as well. If you’ve committed whitespace issues
but haven’t yet pushed upstream, you can run git rebase --whitespace=fix to have Git
automatically fix whitespace issues as it’s rewriting the patches.

Server Configuration
Not nearly as many configuration options are available for the server side of Git, but there are a few
interesting ones you may want to take note of.

receive.fsckObjects

Git is capable of making sure every object received during a push still matches its SHA-1 checksum and
points to valid objects. However, it doesn’t do this by default; it’s a fairly expensive operation, and
might slow down the operation, especially on large repositories or pushes. If you want Git to check
object consistency on every push, you can force it to do so by setting receive.fsckObjects to true:

$ git config --system receive.fsckObjects true

Now, Git will check the integrity of your repository before each push is accepted to make sure faulty (or
malicious) clients aren’t introducing corrupt data.

receive.denyNonFastForwards

If you rebase commits that you’ve already pushed and then try to push again, or otherwise try to
push a commit to a remote branch that doesn’t contain the commit that the remote branch currently
points to, you’ll be denied. This is generally good policy; but in the case of the rebase, you may
determine that you know what you’re doing and can force-update the remote branch with a -f flag
to your push command.

To tell Git to refuse force-pushes, set receive.denyNonFastForwards:

$ git config --system receive.denyNonFastForwards true

The other way you can do this is via server-side receive hooks, which we’ll cover in a bit. That
approach lets you do more complex things like deny non-fast-forwards to a certain subset of users.

321

receive.denyDeletes

One of the workarounds to the denyNonFastForwards policy is for the user to delete the branch and
then push it back up with the new reference. To avoid this, set receive.denyDeletes to true:

$ git config --system receive.denyDeletes true

This denies any deletion of branches or tags – no user can do it. To remove remote branches, you must
remove the ref files from the server manually. There are also more interesting ways to do this on a per-
user basis via ACLs, as you’ll learn in An Example Git-Enforced Policy.

Git Attributes
 Some of these settings can also be specified for a path, so that Git applies those settings only for a
subdirectory or subset of files. These path-specific settings are called Git attributes and are set either
in a .gitattributes file in one of your directories (normally the root of your project) or in the
.git/info/attributes file if you don’t want the attributes file committed with your project.

Using attributes, you can do things like specify separate merge strategies for individual files or
directories in your project, tell Git how to diff non-text files, or have Git filter content before you check
it into or out of Git. In this section, you’ll learn about some of the attributes you can set on your paths
in your Git project and see a few examples of using this feature in practice.

Binary Files
 One cool trick for which you can use Git attributes is telling Git which files are binary (in cases it
otherwise may not be able to figure out) and giving Git special instructions about how to handle those
files. For instance, some text files may be machine generated and not diffable, whereas some binary
files can be diffed. You’ll see how to tell Git which is which.

Identifying Binary Files

Some files look like text files but for all intents and purposes are to be treated as binary data. For
instance, Xcode projects on the Mac contain a file that ends in .pbxproj, which is basically a JSON
(plain-text JavaScript data format) dataset written out to disk by the IDE, which records your build
settings and so on. Although it’s technically a text file (because it’s all UTF-8), you don’t want to
treat it as such because it’s really a lightweight database – you can’t merge the contents if two
people change it, and diffs generally aren’t helpful. The file is meant to be consumed by a machine.
In essence, you want to treat it like a binary file.

To tell Git to treat all pbxproj files as binary data, add the following line to your .gitattributes file:

*.pbxproj binary

Now, Git won’t try to convert or fix CRLF issues; nor will it try to compute or print a diff for changes in
this file when you run git show or git diff on your project.

322

Diffing Binary Files

You can also use the Git attributes functionality to effectively diff binary files. You do this by telling Git
how to convert your binary data to a text format that can be compared via the normal diff.

First, you’ll use this technique to solve one of the most annoying problems known to humanity:
version-controlling Microsoft Word documents. Everyone knows that Word is the most horrific editor
around, but oddly, everyone still uses it. If you want to version-control Word documents, you can stick
them in a Git repository and commit every once in a while; but what good does that do? If you run git
diff normally, you only see something like this:

$ git diff

diff --git a/chapter1.docx b/chapter1.docx

index 88839c4..4afcb7c 100644

Binary files a/chapter1.docx and b/chapter1.docx differ

You can’t directly compare two versions unless you check them out and scan them manually, right? It
turns out you can do this fairly well using Git attributes. Put the following line in your
.gitattributes file:

*.docx diff=word

This tells Git that any file that matches this pattern (.docx) should use the “word” filter when you
try to view a diff that contains changes. What is the “word” filter? You have to set it up. Here you’ll
configure Git to use the docx2txt program to convert Word documents into readable text files, which
it will then diff properly.

First, you’ll need to install docx2txt; you can download it from http://docx2txt.sourceforge.net.
Follow the instructions in the INSTALL file to put it somewhere your shell can find it. Next, you’ll
write a wrapper script to convert output to the format Git expects. Create a file that’s somewhere in
your path called docx2txt, and add these contents:

#!/bin/bash

docx2txt.pl $1 -

Don’t forget to chmod a+x that file. Finally, you can configure Git to use this script:

$ git config diff.word.textconv docx2txt

Now Git knows that if it tries to do a diff between two snapshots, and any of the files end in .docx, it
should run those files through the “word” filter, which is defined as the docx2txt program. This
effectively makes nice text-based versions of your Word files before attempting to diff them.

Here’s an example: Chapter 1 of this book was converted to Word format and committed in a Git
repository. Then a new paragraph was added. Here’s what git diff shows:

323

http://docx2txt.sourceforge.net

$ git diff

diff --git a/chapter1.docx b/chapter1.docx

index 0b013ca..ba25db5 100644

--- a/chapter1.docx

+++ b/chapter1.docx

@@ -2,6 +2,7 @@

 This chapter will be about getting started with Git. We will begin at

the beginning by explaining some background on version control tools,

then move on to how to get Git running on your system and finally how to

get it setup to start working with. At the end of this chapter you

should understand why Git is around, why you should use it and you

should be all setup to do so.

 1.1. About Version Control

 What is "version control", and why should you care? Version control is

a system that records changes to a file or set of files over time so

that you can recall specific versions later. For the examples in this

book you will use software source code as the files being version

controlled, though in reality you can do this with nearly any type of

file on a computer.

+Testing: 1, 2, 3.

 If you are a graphic or web designer and want to keep every version of

an image or layout (which you would most certainly want to), a Version

Control System (VCS) is a very wise thing to use. It allows you to

revert files back to a previous state, revert the entire project back to

a previous state, compare changes over time, see who last modified

something that might be causing a problem, who introduced an issue and

when, and more. Using a VCS also generally means that if you screw

things up or lose files, you can easily recover. In addition, you get

all this for very little overhead.

 1.1.1. Local Version Control Systems

 Many people's version-control method of choice is to copy files into

another directory (perhaps a time-stamped directory, if they're clever).

This approach is very common because it is so simple, but it is also

incredibly error prone. It is easy to forget which directory you're in

and accidentally write to the wrong file or copy over files you don't

mean to.

Git successfully and succinctly tells us that we added the string “Testing: 1, 2, 3.”, which is correct.
It’s not perfect – formatting changes wouldn’t show up here – but it certainly works.

Another interesting problem you can solve this way involves diffing image files. One way to do this is to
run image files through a filter that extracts their EXIF information – metadata that is recorded with
most image formats. If you download and install the exiftool program, you can use it to convert
your images into text about the metadata, so at least the diff will show you a textual representation of
any changes that happened. Put the following line in your .gitattributes file:

*.png diff=exif

Configure Git to use this tool:

324

$ git config diff.exif.textconv exiftool

If you replace an image in your project and run git diff, you see something like this:

diff --git a/image.png b/image.png

index 88839c4..4afcb7c 100644

--- a/image.png

+++ b/image.png

@@ -1,12 +1,12 @@

 ExifTool Version Number : 7.74

-File Size : 70 kB

-File Modification Date/Time : 2009:04:21 07:02:45-07:00

+File Size : 94 kB

+File Modification Date/Time : 2009:04:21 07:02:43-07:00

 File Type : PNG

 MIME Type : image/png

-Image Width : 1058

-Image Height : 889

+Image Width : 1056

+Image Height : 827

 Bit Depth : 8

 Color Type : RGB with Alpha

You can easily see that the file size and image dimensions have both changed.

Keyword Expansion
 SVN- or CVS-style keyword expansion is often requested by developers used to those systems. The
main problem with this in Git is that you can’t modify a file with information about the commit after
you’ve committed, because Git checksums the file first. However, you can inject text into a file when
it’s checked out and remove it again before it’s added to a commit. Git attributes offers you two
ways to do this.

First, you can inject the SHA-1 checksum of a blob into an Id field in the file automatically. If you set
this attribute on a file or set of files, then the next time you check out that branch, Git will replace that
field with the SHA-1 of the blob. It’s important to notice that it isn’t the SHA-1 of the commit, but of
the blob itself. Put the following line in your .gitattributes file:

*.txt ident

Add an Id reference to a test file:

$ echo 'Id' > test.txt

The next time you check out this file, Git injects the SHA-1 of the blob:

325

$ rm test.txt

$ git checkout -- test.txt

$ cat test.txt

$Id: 42812b7653c7b88933f8a9d6cad0ca16714b9bb3 $

However, that result is of limited use. If you’ve used keyword substitution in CVS or Subversion, you
can include a datestamp – the SHA-1 isn’t all that helpful, because it’s fairly random and you can’t
tell if one SHA-1 is older or newer than another just by looking at them.

It turns out that you can write your own filters for doing substitutions in files on commit/checkout.
These are called “clean” and “smudge” filters. In the .gitattributes file, you can set a filter for
particular paths and then set up scripts that will process files just before they’re checked out
(“smudge”, see The “smudge” filter is run on checkout.) and just before they’re staged
(“clean”, see The “clean” filter is run when files are staged.). These filters can be set to do all sorts
of fun things.

圖表 143. The “smudge” filter is run on checkout.

326

圖表 144. The “clean” filter is run when files are staged.

The original commit message for this feature gives a simple example of running all your C source code
through the indent program before committing. You can set it up by setting the filter attribute in your
.gitattributes file to filter *.c files with the “indent” filter:

*.c filter=indent

Then, tell Git what the “indent” filter does on smudge and clean:

$ git config --global filter.indent.clean indent

$ git config --global filter.indent.smudge cat

In this case, when you commit files that match *.c, Git will run them through the indent program
before it stages them and then run them through the cat program before it checks them back out
onto disk. The cat program does essentially nothing: it spits out the same data that it comes in. This
combination effectively filters all C source code files through indent before committing.

Another interesting example gets $Date$ keyword expansion, RCS style. To do this properly, you need
a small script that takes a filename, figures out the last commit date for this project, and inserts the
date into the file. Here is a small Ruby script that does that:

#! /usr/bin/env ruby

data = STDIN.read

last_date = `git log --pretty=format:"%ad" -1`

puts data.gsub('$Date$', '$Date: ' + last_date.to_s + '$')

All the script does is get the latest commit date from the git log command, stick that into any
$Date$ strings it sees in stdin, and print the results – it should be simple to do in whatever language
you’re most comfortable in. You can name this file expand_date and put it in your path. Now, you
need to set up a filter in Git (call it dater) and tell it to use your expand_date filter to smudge the files

327

on checkout. You’ll use a Perl expression to clean that up on commit:

$ git config filter.dater.smudge expand_date

$ git config filter.dater.clean 'perl -pe

"s/\\\$Date[^\\\$]*\\\$/\\\$Date\\\$/"'

This Perl snippet strips out anything it sees in a $Date$ string, to get back to where you started. Now
that your filter is ready, you can test it by setting up a Git attribute for that file that engages the new
filter and creating a file with your $Date$ keyword:

date*.txt filter=dater

$ echo '# $Date$' > date_test.txt

If you commit those changes and check out the file again, you see the keyword properly substituted:

$ git add date_test.txt .gitattributes

$ git commit -m "Testing date expansion in Git"

$ rm date_test.txt

$ git checkout date_test.txt

$ cat date_test.txt

$Date: Tue Apr 21 07:26:52 2009 -0700$

You can see how powerful this technique can be for customized applications. You have to be careful,
though, because the .gitattributes file is committed and passed around with the project, but the
driver (in this case, dater) isn’t, so it won’t work everywhere. When you design these filters, they
should be able to fail gracefully and have the project still work properly.

Exporting Your Repository
 Git attribute data also allows you to do some interesting things when exporting an archive of your
project.

export-ignore

You can tell Git not to export certain files or directories when generating an archive. If there is a
subdirectory or file that you don’t want to include in your archive file but that you do want checked
into your project, you can determine those files via the export-ignore attribute.

For example, say you have some test files in a test/ subdirectory, and it doesn’t make sense to
include them in the tarball export of your project. You can add the following line to your Git attributes
file:

test/ export-ignore

Now, when you run git archive to create a tarball of your project, that directory won’t be included in

328

the archive.

export-subst

When exporting files for deployment you can apply git log's formatting and keyword-expansion
processing to selected portions of files marked with the export-subst attribute.

For instance, if you want to include a file named LAST_COMMIT in your project, and have metadata
about the last commit automatically injected into it when git archive runs, you can for example set
up your .gitattributes and LAST_COMMIT files like this:

LAST_COMMIT export-subst

$ echo 'Last commit date: $Format:%cd by %aN$' > LAST_COMMIT

$ git add LAST_COMMIT .gitattributes

$ git commit -am 'adding LAST_COMMIT file for archives'

When you run git archive, the contents of the archived file will look like this:

$ git archive HEAD | tar xCf ../deployment-testing -

$ cat ../deployment-testing/LAST_COMMIT

Last commit date: Tue Apr 21 08:38:48 2009 -0700 by Scott Chacon

The substitutions can include for example the commit message and any git notes, and git log can do
simple word wrapping:

$ echo '$Format:Last commit: %h by %aN at %cd%n%+w(76,6,9)%B$' >

LAST_COMMIT

$ git commit -am 'export-subst uses git log's custom formatter

git archive uses git log's `pretty=format:` processor

directly, and strips the surrounding `$Format:` and `$`

markup from the output.

'

$ git archive @ | tar xfO - LAST_COMMIT

Last commit: 312ccc8 by Jim Hill at Fri May 8 09:14:04 2015 -0700

 export-subst uses git log's custom formatter

 git archive uses git log's `pretty=format:` processor directly,

and

 strips the surrounding `$Format:` and `$` markup from the

output.

The resulting archive is suitable for deployment work, but like any exported archive it isn’t suitable
for further development work.

329

Merge Strategies
 You can also use Git attributes to tell Git to use different merge strategies for specific files in your
project. One very useful option is to tell Git to not try to merge specific files when they have conflicts,
but rather to use your side of the merge over someone else’s.

This is helpful if a branch in your project has diverged or is specialized, but you want to be able to
merge changes back in from it, and you want to ignore certain files. Say you have a database settings
file called database.xml that is different in two branches, and you want to merge in your other
branch without messing up the database file. You can set up an attribute like this:

database.xml merge=ours

And then define a dummy ours merge strategy with:

$ git config --global merge.ours.driver true

If you merge in the other branch, instead of having merge conflicts with the database.xml file, you
see something like this:

$ git merge topic

Auto-merging database.xml

Merge made by recursive.

In this case, database.xml stays at whatever version you originally had.

Git Hooks
 Like many other Version Control Systems, Git has a way to fire off custom scripts when certain
important actions occur. There are two groups of these hooks: client-side and server-side. Client-side
hooks are triggered by operations such as committing and merging, while server-side hooks run on
network operations such as receiving pushed commits. You can use these hooks for all sorts of
reasons.

Installing a Hook
The hooks are all stored in the hooks subdirectory of the Git directory. In most projects, that’s
.git/hooks. When you initialize a new repository with git init, Git populates the hooks directory
with a bunch of example scripts, many of which are useful by themselves; but they also document the
input values of each script. All the examples are written as shell scripts, with some Perl thrown in, but
any properly named executable scripts will work fine – you can write them in Ruby or Python or what
have you. If you want to use the bundled hook scripts, you’ll have to rename them; their file names
all end with .sample.

To enable a hook script, put a file in the hooks subdirectory of your .git directory that is named
appropriately (without any extension) and is executable. From that point forward, it should be called.
We’ll cover most of the major hook filenames here.

330

Client-Side Hooks
There are a lot of client-side hooks. This section splits them into committing-workflow hooks, email-
workflow scripts, and everything else.

筆記
It’s important to note that client-side hooks are not copied when you clone a
repository. If your intent with these scripts is to enforce a policy, you’ll probably want
to do that on the server side; see the example in An Example Git-Enforced Policy.

Committing-Workflow Hooks

The first four hooks have to do with the committing process.

The pre-commit hook is run first, before you even type in a commit message. It’s used to inspect the
snapshot that’s about to be committed, to see if you’ve forgotten something, to make sure tests
run, or to examine whatever you need to inspect in the code. Exiting non-zero from this hook aborts
the commit, although you can bypass it with git commit --no-verify. You can do things like check
for code style (run lint or something equivalent), check for trailing whitespace (the default hook does
exactly this), or check for appropriate documentation on new methods.

The prepare-commit-msg hook is run before the commit message editor is fired up but after the
default message is created. It lets you edit the default message before the commit author sees it. This
hook takes a few parameters: the path to the file that holds the commit message so far, the type of
commit, and the commit SHA-1 if this is an amended commit. This hook generally isn’t useful for
normal commits; rather, it’s good for commits where the default message is auto-generated, such as
templated commit messages, merge commits, squashed commits, and amended commits. You may
use it in conjunction with a commit template to programmatically insert information.

The commit-msg hook takes one parameter, which again is the path to a temporary file that contains
the commit message written by the developer. If this script exits non-zero, Git aborts the commit
process, so you can use it to validate your project state or commit message before allowing a commit
to go through. In the last section of this chapter, We’ll demonstrate using this hook to check that your
commit message is conformant to a required pattern.

After the entire commit process is completed, the post-commit hook runs. It doesn’t take any
parameters, but you can easily get the last commit by running git log -1 HEAD. Generally, this
script is used for notification or something similar.

Email Workflow Hooks

You can set up three client-side hooks for an email-based workflow. They’re all invoked by the git
am command, so if you aren’t using that command in your workflow, you can safely skip to the next
section. If you’re taking patches over email prepared by git format-patch, then some of these
may be helpful to you.

The first hook that is run is applypatch-msg. It takes a single argument: the name of the temporary
file that contains the proposed commit message. Git aborts the patch if this script exits non-zero. You
can use this to make sure a commit message is properly formatted, or to normalize the message by
having the script edit it in place.

The next hook to run when applying patches via git am is pre-applypatch. Somewhat confusingly,
it is run after the patch is applied but before a commit is made, so you can use it to inspect the

331

snapshot before making the commit. You can run tests or otherwise inspect the working tree with this
script. If something is missing or the tests don’t pass, exiting non-zero aborts the git am script
without committing the patch.

The last hook to run during a git am operation is post-applypatch, which runs after the commit is
made. You can use it to notify a group or the author of the patch you pulled in that you’ve done so.
You can’t stop the patching process with this script.

Other Client Hooks

The pre-rebase hook runs before you rebase anything and can halt the process by exiting non-zero.
You can use this hook to disallow rebasing any commits that have already been pushed. The example
pre-rebase hook that Git installs does this, although it makes some assumptions that may not match
with your workflow.

The post-rewrite hook is run by commands that replace commits, such as git commit --amend
and git rebase (though not by git filter-branch). Its single argument is which command
triggered the rewrite, and it receives a list of rewrites on stdin. This hook has many of the same uses
as the post-checkout and post-merge hooks.

After you run a successful git checkout, the post-checkout hook runs; you can use it to set up
your working directory properly for your project environment. This may mean moving in large binary
files that you don’t want source controlled, auto-generating documentation, or something along
those lines.

The post-merge hook runs after a successful merge command. You can use it to restore data in the
working tree that Git can’t track, such as permissions data. This hook can likewise validate the
presence of files external to Git control that you may want copied in when the working tree changes.

The pre-push hook runs during git push, after the remote refs have been updated but before any
objects have been transferred. It receives the name and location of the remote as parameters, and a
list of to-be-updated refs through stdin. You can use it to validate a set of ref updates before a push
occurs (a non-zero exit code will abort the push).

Git occasionally does garbage collection as part of its normal operation, by invoking git gc --auto.
The pre-auto-gc hook is invoked just before the garbage collection takes place, and can be used to
notify you that this is happening, or to abort the collection if now isn’t a good time.

Server-Side Hooks
In addition to the client-side hooks, you can use a couple of important server-side hooks as a system
administrator to enforce nearly any kind of policy for your project. These scripts run before and after
pushes to the server. The pre hooks can exit non-zero at any time to reject the push as well as print an
error message back to the client; you can set up a push policy that’s as complex as you wish.

pre-receive

The first script to run when handling a push from a client is pre-receive. It takes a list of references
that are being pushed from stdin; if it exits non-zero, none of them are accepted. You can use this hook
to do things like make sure none of the updated references are non-fast-forwards, or to do access
control for all the refs and files they’re modifying with the push.

332

update

The update script is very similar to the pre-receive script, except that it’s run once for each branch
the pusher is trying to update. If the pusher is trying to push to multiple branches, pre-receive runs
only once, whereas update runs once per branch they’re pushing to. Instead of reading from stdin,
this script takes three arguments: the name of the reference (branch), the SHA-1 that reference
pointed to before the push, and the SHA-1 the user is trying to push. If the update script exits non-zero,
only that reference is rejected; other references can still be updated.

post-receive

The post-receive hook runs after the entire process is completed and can be used to update other
services or notify users. It takes the same stdin data as the pre-receive hook. Examples include
emailing a list, notifying a continuous integration server, or updating a ticket-tracking system – you
can even parse the commit messages to see if any tickets need to be opened, modified, or closed. This
script can’t stop the push process, but the client doesn’t disconnect until it has completed, so be
careful if you try to do anything that may take a long time.

An Example Git-Enforced Policy
 In this section, you’ll use what you’ve learned to establish a Git workflow that checks for a custom
commit message format, and allows only certain users to modify certain subdirectories in a project.
You’ll build client scripts that help the developer know if their push will be rejected and server scripts
that actually enforce the policies.

The scripts we’ll show are written in Ruby; partly because of our intellectual inertia, but also because
Ruby is easy to read, even if you can’t necessarily write it. However, any language will work – all the
sample hook scripts distributed with Git are in either Perl or Bash, so you can also see plenty of
examples of hooks in those languages by looking at the samples.

Server-Side Hook
All the server-side work will go into the update file in your hooks directory. The update hook runs
once per branch being pushed and takes three arguments:

• The name of the reference being pushed to
• The old revision where that branch was
• The new revision being pushed

You also have access to the user doing the pushing if the push is being run over SSH. If you’ve
allowed everyone to connect with a single user (like “git”) via public-key authentication, you may
have to give that user a shell wrapper that determines which user is connecting based on the public
key, and set an environment variable accordingly. Here we’ll assume the connecting user is in the
$USER environment variable, so your update script begins by gathering all the information you need:

333

#!/usr/bin/env ruby

$refname = ARGV[0]

$oldrev = ARGV[1]

$newrev = ARGV[2]

$user = ENV['USER']

puts "Enforcing Policies..."

puts "(#{$refname}) (#{$oldrev[0,6]}) (#{$newrev[0,6]})"

Yes, those are global variables. Don’t judge – it’s easier to demonstrate this way.

Enforcing a Specific Commit-Message Format

Your first challenge is to enforce that each commit message adheres to a particular format. Just to
have a target, assume that each message has to include a string that looks like “ref: 1234” because
you want each commit to link to a work item in your ticketing system. You must look at each commit
being pushed up, see if that string is in the commit message, and, if the string is absent from any of the
commits, exit non-zero so the push is rejected.

You can get a list of the SHA-1 values of all the commits that are being pushed by taking the $newrev
and $oldrev values and passing them to a Git plumbing command called git rev-list. This is
basically the git log command, but by default it prints out only the SHA-1 values and no other
information. So, to get a list of all the commit SHA-1s introduced between one commit SHA-1 and
another, you can run something like this:

$ git rev-list 538c33..d14fc7

d14fc7c847ab946ec39590d87783c69b031bdfb7

9f585da4401b0a3999e84113824d15245c13f0be

234071a1be950e2a8d078e6141f5cd20c1e61ad3

dfa04c9ef3d5197182f13fb5b9b1fb7717d2222a

17716ec0f1ff5c77eff40b7fe912f9f6cfd0e475

You can take that output, loop through each of those commit SHA-1s, grab the message for it, and test
that message against a regular expression that looks for a pattern.

You have to figure out how to get the commit message from each of these commits to test. To get the
raw commit data, you can use another plumbing command called git cat-file. We’ll go over all
these plumbing commands in detail in Git Internals; but for now, here’s what that command gives
you:

$ git cat-file commit ca82a6

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the version number

334

A simple way to get the commit message from a commit when you have the SHA-1 value is to go to the
first blank line and take everything after that. You can do so with the sed command on Unix systems:

$ git cat-file commit ca82a6 | sed '1,/^$/d'

changed the version number

You can use that incantation to grab the commit message from each commit that is trying to be
pushed and exit if you see anything that doesn’t match. To exit the script and reject the push, exit
non-zero. The whole method looks like this:

$regex = /\[ref: (\d+)\]/

enforced custom commit message format

def check_message_format

 missed_revs = `git rev-list #{$oldrev}..#{$newrev}`.split("\n")

 missed_revs.each do |rev|

 message = `git cat-file commit #{rev} | sed '1,/^$/d'`

 if !$regex.match(message)

 puts "[POLICY] Your message is not formatted correctly"

 exit 1

 end

 end

end

check_message_format

Putting that in your update script will reject updates that contain commits that have messages that
don’t adhere to your rule.

Enforcing a User-Based ACL System

Suppose you want to add a mechanism that uses an access control list (ACL) that specifies which users
are allowed to push changes to which parts of your projects. Some people have full access, and others
can only push changes to certain subdirectories or specific files. To enforce this, you’ll write those
rules to a file named acl that lives in your bare Git repository on the server. You’ll have the update
hook look at those rules, see what files are being introduced for all the commits being pushed, and
determine whether the user doing the push has access to update all those files.

The first thing you’ll do is write your ACL. Here you’ll use a format very much like the CVS ACL
mechanism: it uses a series of lines, where the first field is avail or unavail, the next field is a
comma-delimited list of the users to which the rule applies, and the last field is the path to which the
rule applies (blank meaning open access). All of these fields are delimited by a pipe (|) character.

In this case, you have a couple of administrators, some documentation writers with access to the doc
directory, and one developer who only has access to the lib and tests directories, and your ACL file
looks like this:

335

avail|nickh,pjhyett,defunkt,tpw

avail|usinclair,cdickens,ebronte|doc

avail|schacon|lib

avail|schacon|tests

You begin by reading this data into a structure that you can use. In this case, to keep the example
simple, you’ll only enforce the avail directives. Here is a method that gives you an associative array
where the key is the user name and the value is an array of paths to which the user has write access:

def get_acl_access_data(acl_file)

 # read in ACL data

 acl_file = File.read(acl_file).split("\n").reject { |line| line == ''

}

 access = {}

 acl_file.each do |line|

 avail, users, path = line.split('|')

 next unless avail == 'avail'

 users.split(',').each do |user|

 access[user] ||= []

 access[user] << path

 end

 end

 access

end

On the ACL file you looked at earlier, this get_acl_access_data method returns a data structure that
looks like this:

{"defunkt"=>[nil],

 "tpw"=>[nil],

 "nickh"=>[nil],

 "pjhyett"=>[nil],

 "schacon"=>["lib", "tests"],

 "cdickens"=>["doc"],

 "usinclair"=>["doc"],

 "ebronte"=>["doc"]}

Now that you have the permissions sorted out, you need to determine what paths the commits being
pushed have modified, so you can make sure the user who’s pushing has access to all of them.

You can pretty easily see what files have been modified in a single commit with the --name-only
option to the git log command (mentioned briefly in Git 基礎):

$ git log -1 --name-only --pretty=format:'' 9f585d

README

lib/test.rb

336

If you use the ACL structure returned from the get_acl_access_data method and check it against
the listed files in each of the commits, you can determine whether the user has access to push all of
their commits:

only allows certain users to modify certain subdirectories in a

project

def check_directory_perms

 access = get_acl_access_data('acl')

 # see if anyone is trying to push something they can't

 new_commits = `git rev-list #{$oldrev}..#{$newrev}`.split("\n")

 new_commits.each do |rev|

 files_modified = `git log -1 --name-only --pretty=format:''

#{rev}`.split("\n")

 files_modified.each do |path|

 next if path.size == 0

 has_file_access = false

 access[$user].each do |access_path|

 if !access_path # user has access to everything

 || (path.start_with? access_path) # access to this path

 has_file_access = true

 end

 end

 if !has_file_access

 puts "[POLICY] You do not have access to push to #{path}"

 exit 1

 end

 end

 end

end

check_directory_perms

You get a list of new commits being pushed to your server with git rev-list. Then, for each of those
commits, you find which files are modified and make sure the user who’s pushing has access to all
the paths being modified.

Now your users can’t push any commits with badly formed messages or with modified files outside
of their designated paths.

Testing It Out

If you run chmod u+x .git/hooks/update, which is the file into which you should have put all this
code, and then try to push a commit with a non-compliant message, you get something like this:

337

$ git push -f origin master

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 323 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

Enforcing Policies...

(refs/heads/master) (8338c5) (c5b616)

[POLICY] Your message is not formatted correctly

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

To git@gitserver:project.git

 ! [remote rejected] master -> master (hook declined)

error: failed to push some refs to 'git@gitserver:project.git'

There are a couple of interesting things here. First, you see this where the hook starts running.

Enforcing Policies...

(refs/heads/master) (fb8c72) (c56860)

Remember that you printed that out at the very beginning of your update script. Anything your script
echoes to stdout will be transferred to the client.

The next thing you’ll notice is the error message.

[POLICY] Your message is not formatted correctly

error: hooks/update exited with error code 1

error: hook declined to update refs/heads/master

The first line was printed out by you, the other two were Git telling you that the update script exited
non-zero and that is what is declining your push. Lastly, you have this:

To git@gitserver:project.git

 ! [remote rejected] master -> master (hook declined)

error: failed to push some refs to 'git@gitserver:project.git'

You’ll see a remote rejected message for each reference that your hook declined, and it tells you that
it was declined specifically because of a hook failure.

Furthermore, if someone tries to edit a file they don’t have access to and push a commit containing
it, they will see something similar. For instance, if a documentation author tries to push a commit
modifying something in the lib directory, they see

[POLICY] You do not have access to push to lib/test.rb

338

From now on, as long as that update script is there and executable, your repository will never have a
commit message without your pattern in it, and your users will be sandboxed.

Client-Side Hooks
The downside to this approach is the whining that will inevitably result when your users' commit
pushes are rejected. Having their carefully crafted work rejected at the last minute can be extremely
frustrating and confusing; and furthermore, they will have to edit their history to correct it, which
isn’t always for the faint of heart.

The answer to this dilemma is to provide some client-side hooks that users can run to notify them
when they’re doing something that the server is likely to reject. That way, they can correct any
problems before committing and before those issues become more difficult to fix. Because hooks
aren’t transferred with a clone of a project, you must distribute these scripts some other way and
then have your users copy them to their .git/hooks directory and make them executable. You can
distribute these hooks within the project or in a separate project, but Git won’t set them up
automatically.

To begin, you should check your commit message just before each commit is recorded, so you know
the server won’t reject your changes due to badly formatted commit messages. To do this, you can
add the commit-msg hook. If you have it read the message from the file passed as the first argument
and compare that to the pattern, you can force Git to abort the commit if there is no match:

#!/usr/bin/env ruby

message_file = ARGV[0]

message = File.read(message_file)

$regex = /\[ref: (\d+)\]/

if !$regex.match(message)

 puts "[POLICY] Your message is not formatted correctly"

 exit 1

end

If that script is in place (in .git/hooks/commit-msg) and executable, and you commit with a
message that isn’t properly formatted, you see this:

$ git commit -am 'test'

[POLICY] Your message is not formatted correctly

No commit was completed in that instance. However, if your message contains the proper pattern, Git
allows you to commit:

$ git commit -am 'test [ref: 132]'

[master e05c914] test [ref: 132]

 1 file changed, 1 insertions(+), 0 deletions(-)

Next, you want to make sure you aren’t modifying files that are outside your ACL scope. If your

339

project’s .git directory contains a copy of the ACL file you used previously, then the following pre-
commit script will enforce those constraints for you:

#!/usr/bin/env ruby

$user = ENV['USER']

[insert acl_access_data method from above]

only allows certain users to modify certain subdirectories in a

project

def check_directory_perms

 access = get_acl_access_data('.git/acl')

 files_modified = `git diff-index --cached --name-only

HEAD`.split("\n")

 files_modified.each do |path|

 next if path.size == 0

 has_file_access = false

 access[$user].each do |access_path|

 if !access_path || (path.index(access_path) == 0)

 has_file_access = true

 end

 if !has_file_access

 puts "[POLICY] You do not have access to push to #{path}"

 exit 1

 end

 end

end

check_directory_perms

This is roughly the same script as the server-side part, but with two important differences. First, the
ACL file is in a different place, because this script runs from your working directory, not from your .git
directory. You have to change the path to the ACL file from this

access = get_acl_access_data('acl')

to this:

access = get_acl_access_data('.git/acl')

The other important difference is the way you get a listing of the files that have been changed. Because
the server-side method looks at the log of commits, and, at this point, the commit hasn’t been
recorded yet, you must get your file listing from the staging area instead. Instead of

files_modified = `git log -1 --name-only --pretty=format:'' #{ref}`

340

you have to use

files_modified = `git diff-index --cached --name-only HEAD`

But those are the only two differences – otherwise, the script works the same way. One caveat is that it
expects you to be running locally as the same user you push as to the remote machine. If that is
different, you must set the $user variable manually.

One other thing we can do here is make sure the user doesn’t push non-fast-forwarded references. To
get a reference that isn’t a fast-forward, you either have to rebase past a commit you’ve already
pushed up or try pushing a different local branch up to the same remote branch.

Presumably, the server is already configured with receive.denyDeletes and
receive.denyNonFastForwards to enforce this policy, so the only accidental thing you can try to
catch is rebasing commits that have already been pushed.

Here is an example pre-rebase script that checks for that. It gets a list of all the commits you’re about
to rewrite and checks whether they exist in any of your remote references. If it sees one that is
reachable from one of your remote references, it aborts the rebase.

#!/usr/bin/env ruby

base_branch = ARGV[0]

if ARGV[1]

 topic_branch = ARGV[1]

else

 topic_branch = "HEAD"

end

target_shas = `git rev-list #{base_branch}..#{topic_branch}`.split("\n")

remote_refs = `git branch -r`.split("\n").map { |r| r.strip }

target_shas.each do |sha|

 remote_refs.each do |remote_ref|

 shas_pushed = `git rev-list ^#{sha}^@ refs/remotes/#{remote_ref}`

 if shas_pushed.split("\n").include?(sha)

 puts "[POLICY] Commit #{sha} has already been pushed to

#{remote_ref}"

 exit 1

 end

 end

end

This script uses a syntax that wasn’t covered in Revision Selection. You get a list of commits that have
already been pushed up by running this:

`git rev-list ^#{sha}^@ refs/remotes/#{remote_ref}`

341

The SHA^@ syntax resolves to all the parents of that commit. You’re looking for any commit that is
reachable from the last commit on the remote and that isn’t reachable from any parent of any of the
SHA-1s you’re trying to push up – meaning it’s a fast-forward.

The main drawback to this approach is that it can be very slow and is often unnecessary – if you
don’t try to force the push with -f, the server will warn you and not accept the push. However, it’s
an interesting exercise and can in theory help you avoid a rebase that you might later have to go back
and fix.

Summary
We’ve covered most of the major ways that you can customize your Git client and server to best fit
your workflow and projects. You’ve learned about all sorts of configuration settings, file-based
attributes, and event hooks, and you’ve built an example policy-enforcing server. You should now be
able to make Git fit nearly any workflow you can dream up.

342

Git and Other Systems
The world isn’t perfect. Usually, you can’t immediately switch every project you come in contact
with to Git. Sometimes you’re stuck on a project using another VCS, and wish it was Git. We’ll spend
the first part of this chapter learning about ways to use Git as a client when the project you’re
working on is hosted in a different system.

At some point, you may want to convert your existing project to Git. The second part of this chapter
covers how to migrate your project into Git from several specific systems, as well as a method that will
work if no pre-built import tool exists.

Git as a Client
 Git provides such a nice experience for developers that many people have figured out how to use it on
their workstation, even if the rest of their team is using an entirely different VCS. There are a number of
these adapters, called “bridges,” available. Here we’ll cover the ones you’re most likely to run
into in the wild.

Git and Subversion
 A large fraction of open source development projects and a good number of corporate projects use

Subversion to manage their source code. It’s been around for more than a decade, and for most of
that time was the de facto VCS choice for open-source projects. It’s also very similar in many ways to
CVS, which was the big boy of the source-control world before that.

 One of Git’s great features is a bidirectional bridge to Subversion called git svn. This tool allows
you to use Git as a valid client to a Subversion server, so you can use all the local features of Git and
then push to a Subversion server as if you were using Subversion locally. This means you can do local
branching and merging, use the staging area, use rebasing and cherry-picking, and so on, while your
collaborators continue to work in their dark and ancient ways. It’s a good way to sneak Git into the
corporate environment and help your fellow developers become more efficient while you lobby to get
the infrastructure changed to support Git fully. The Subversion bridge is the gateway drug to the DVCS
world.

git svn

The base command in Git for all the Subversion bridging commands is git svn. It takes quite a few
commands, so we’ll show the most common while going through a few simple workflows.

It’s important to note that when you’re using git svn, you’re interacting with Subversion, which
is a system that works very differently from Git. Although you can do local branching and merging,
it’s generally best to keep your history as linear as possible by rebasing your work, and avoiding
doing things like simultaneously interacting with a Git remote repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git repository to
collaborate with fellow Git developers at the same time. Subversion can have only a single linear
history, and confusing it is very easy. If you’re working with a team, and some are using SVN and
others are using Git, make sure everyone is using the SVN server to collaborate – doing so will make
your life easier.

343

Setting Up

To demonstrate this functionality, you need a typical SVN repository that you have write access to. If
you want to copy these examples, you’ll have to make a writeable copy of my test repository. In order
to do that easily, you can use a tool called svnsync that comes with Subversion. For these tests, we
created a new Subversion repository on Google Code that was a partial copy of the protobuf project,
which is a tool that encodes structured data for network transmission.

To follow along, you first need to create a new local Subversion repository:

$ mkdir /tmp/test-svn

$ svnadmin create /tmp/test-svn

Then, enable all users to change revprops – the easy way is to add a pre-revprop-change script that
always exits 0:

$ cat /tmp/test-svn/hooks/pre-revprop-change

#!/bin/sh

exit 0;

$ chmod +x /tmp/test-svn/hooks/pre-revprop-change

You can now sync this project to your local machine by calling svnsync init with the to and from
repositories.

$ svnsync init file:///tmp/test-svn \

 http://progit-example.googlecode.com/svn/

This sets up the properties to run the sync. You can then clone the code by running

$ svnsync sync file:///tmp/test-svn

Committed revision 1.

Copied properties for revision 1.

Transmitting file data[...]

Committed revision 2.

Copied properties for revision 2.

[…]

Although this operation may take only a few minutes, if you try to copy the original repository to
another remote repository instead of a local one, the process will take nearly an hour, even though
there are fewer than 100 commits. Subversion has to clone one revision at a time and then push it
back into another repository – it’s ridiculously inefficient, but it’s the only easy way to do this.

Getting Started

Now that you have a Subversion repository to which you have write access, you can go through a
typical workflow. You’ll start with the git svn clone command, which imports an entire
Subversion repository into a local Git repository. Remember that if you’re importing from a real

344

hosted Subversion repository, you should replace the file:///tmp/test-svn here with the URL of
your Subversion repository:

$ git svn clone file:///tmp/test-svn -T trunk -b branches -t tags

Initialized empty Git repository in /private/tmp/progit/test-svn/.git/

r1 = dcbfb5891860124cc2e8cc616cded42624897125

(refs/remotes/origin/trunk)

 A m4/acx_pthread.m4

 A m4/stl_hash.m4

 A java/src/test/java/com/google/protobuf/UnknownFieldSetTest.java

 A java/src/test/java/com/google/protobuf/WireFormatTest.java

…

r75 = 556a3e1e7ad1fde0a32823fc7e4d046bcfd86dae

(refs/remotes/origin/trunk)

Found possible branch point: file:///tmp/test-svn/trunk =>

file:///tmp/test-svn/branches/my-calc-branch, 75

Found branch parent: (refs/remotes/origin/my-calc-branch)

556a3e1e7ad1fde0a32823fc7e4d046bcfd86dae

Following parent with do_switch

Successfully followed parent

r76 = 0fb585761df569eaecd8146c71e58d70147460a2 (refs/remotes/origin/my-

calc-branch)

Checked out HEAD:

 file:///tmp/test-svn/trunk r75

This runs the equivalent of two commands – git svn init followed by git svn fetch – on the
URL you provide. This can take a while. The test project has only about 75 commits and the codebase
isn’t that big, but Git has to check out each version, one at a time, and commit it individually. For a
project with hundreds or thousands of commits, this can literally take hours or even days to finish.

The -T trunk -b branches -t tags part tells Git that this Subversion repository follows the basic
branching and tagging conventions. If you name your trunk, branches, or tags differently, you can
change these options. Because this is so common, you can replace this entire part with -s, which
means standard layout and implies all those options. The following command is equivalent:

$ git svn clone file:///tmp/test-svn -s

At this point, you should have a valid Git repository that has imported your branches and tags:

$ git branch -a

* master

 remotes/origin/my-calc-branch

 remotes/origin/tags/2.0.2

 remotes/origin/tags/release-2.0.1

 remotes/origin/tags/release-2.0.2

 remotes/origin/tags/release-2.0.2rc1

 remotes/origin/trunk

Note how this tool manages Subversion tags as remote refs. Let’s take a closer look with the Git

345

plumbing command show-ref:

$ git show-ref

556a3e1e7ad1fde0a32823fc7e4d046bcfd86dae refs/heads/master

0fb585761df569eaecd8146c71e58d70147460a2 refs/remotes/origin/my-calc-

branch

bfd2d79303166789fc73af4046651a4b35c12f0b refs/remotes/origin/tags/2.0.2

285c2b2e36e467dd4d91c8e3c0c0e1750b3fe8ca

refs/remotes/origin/tags/release-2.0.1

cbda99cb45d9abcb9793db1d4f70ae562a969f1e

refs/remotes/origin/tags/release-2.0.2

a9f074aa89e826d6f9d30808ce5ae3ffe711feda

refs/remotes/origin/tags/release-2.0.2rc1

556a3e1e7ad1fde0a32823fc7e4d046bcfd86dae refs/remotes/origin/trunk

Git doesn’t do this when it clones from a Git server; here’s what a repository with tags looks like
after a fresh clone:

$ git show-ref

c3dcbe8488c6240392e8a5d7553bbffcb0f94ef0 refs/remotes/origin/master

32ef1d1c7cc8c603ab78416262cc421b80a8c2df refs/remotes/origin/branch-1

75f703a3580a9b81ead89fe1138e6da858c5ba18 refs/remotes/origin/branch-2

23f8588dde934e8f33c263c6d8359b2ae095f863 refs/tags/v0.1.0

7064938bd5e7ef47bfd79a685a62c1e2649e2ce7 refs/tags/v0.2.0

6dcb09b5b57875f334f61aebed695e2e4193db5e refs/tags/v1.0.0

Git fetches the tags directly into refs/tags, rather than treating them remote branches.

Committing Back to Subversion

Now that you have a working repository, you can do some work on the project and push your commits
back upstream, using Git effectively as a SVN client. If you edit one of the files and commit it, you have
a commit that exists in Git locally that doesn’t exist on the Subversion server:

$ git commit -am 'Adding git-svn instructions to the README'

[master 4af61fd] Adding git-svn instructions to the README

 1 file changed, 5 insertions(+)

Next, you need to push your change upstream. Notice how this changes the way you work with
Subversion – you can do several commits offline and then push them all at once to the Subversion
server. To push to a Subversion server, you run the git svn dcommit command:

346

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

 M README.txt

Committed r77

 M README.txt

r77 = 95e0222ba6399739834380eb10afcd73e0670bc5

(refs/remotes/origin/trunk)

No changes between 4af61fd05045e07598c553167e0f31c84fd6ffe1 and

refs/remotes/origin/trunk

Resetting to the latest refs/remotes/origin/trunk

This takes all the commits you’ve made on top of the Subversion server code, does a Subversion
commit for each, and then rewrites your local Git commit to include a unique identifier. This is
important because it means that all the SHA-1 checksums for your commits change. Partly for this
reason, working with Git-based remote versions of your projects concurrently with a Subversion server
isn’t a good idea. If you look at the last commit, you can see the new git-svn-id that was added:

$ git log -1

commit 95e0222ba6399739834380eb10afcd73e0670bc5

Author: ben <ben@0b684db3-b064-4277-89d1-21af03df0a68>

Date: Thu Jul 24 03:08:36 2014 +0000

 Adding git-svn instructions to the README

 git-svn-id: file:///tmp/test-svn/trunk@77 0b684db3-b064-4277-89d1-

21af03df0a68

Notice that the SHA-1 checksum that originally started with 4af61fd when you committed now begins
with 95e0222. If you want to push to both a Git server and a Subversion server, you have to push
(dcommit) to the Subversion server first, because that action changes your commit data.

Pulling in New Changes

If you’re working with other developers, then at some point one of you will push, and then the other
one will try to push a change that conflicts. That change will be rejected until you merge in their work.
In git svn, it looks like this:

347

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

ERROR from SVN:

Transaction is out of date: File '/trunk/README.txt' is out of date

W: d5837c4b461b7c0e018b49d12398769d2bfc240a and

refs/remotes/origin/trunk differ, using rebase:

:100644 100644 f414c433af0fd6734428cf9d2a9fd8ba00ada145

c80b6127dd04f5fcda218730ddf3a2da4eb39138 M README.txt

Current branch master is up to date.

ERROR: Not all changes have been committed into SVN, however the

committed

ones (if any) seem to be successfully integrated into the working tree.

Please see the above messages for details.

To resolve this situation, you can run git svn rebase, which pulls down any changes on the server
that you don’t have yet and rebases any work you have on top of what is on the server:

$ git svn rebase

Committing to file:///tmp/test-svn/trunk ...

ERROR from SVN:

Transaction is out of date: File '/trunk/README.txt' is out of date

W: eaa029d99f87c5c822c5c29039d19111ff32ef46 and

refs/remotes/origin/trunk differ, using rebase:

:100644 100644 65536c6e30d263495c17d781962cfff12422693a

b34372b25ccf4945fe5658fa381b075045e7702a M README.txt

First, rewinding head to replay your work on top of it...

Applying: update foo

Using index info to reconstruct a base tree...

M README.txt

Falling back to patching base and 3-way merge...

Auto-merging README.txt

ERROR: Not all changes have been committed into SVN, however the

committed

ones (if any) seem to be successfully integrated into the working tree.

Please see the above messages for details.

Now, all your work is on top of what is on the Subversion server, so you can successfully dcommit:

348

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

 M README.txt

Committed r85

 M README.txt

r85 = 9c29704cc0bbbed7bd58160cfb66cb9191835cd8

(refs/remotes/origin/trunk)

No changes between 5762f56732a958d6cfda681b661d2a239cc53ef5 and

refs/remotes/origin/trunk

Resetting to the latest refs/remotes/origin/trunk

Note that unlike Git, which requires you to merge upstream work you don’t yet have locally before
you can push, git svn makes you do that only if the changes conflict (much like how Subversion
works). If someone else pushes a change to one file and then you push a change to another file, your
dcommit will work fine:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

 M configure.ac

Committed r87

 M autogen.sh

r86 = d8450bab8a77228a644b7dc0e95977ffc61adff7

(refs/remotes/origin/trunk)

 M configure.ac

r87 = f3653ea40cb4e26b6281cec102e35dcba1fe17c4

(refs/remotes/origin/trunk)

W: a0253d06732169107aa020390d9fefd2b1d92806 and

refs/remotes/origin/trunk differ, using rebase:

:100755 100755 efa5a59965fbbb5b2b0a12890f1b351bb5493c18

e757b59a9439312d80d5d43bb65d4a7d0389ed6d M autogen.sh

First, rewinding head to replay your work on top of it...

This is important to remember, because the outcome is a project state that didn’t exist on either of
your computers when you pushed. If the changes are incompatible but don’t conflict, you may get
issues that are difficult to diagnose. This is different than using a Git server – in Git, you can fully test
the state on your client system before publishing it, whereas in SVN, you can’t ever be certain that
the states immediately before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server, even if you’re not
ready to commit yourself. You can run git svn fetch to grab the new data, but git svn rebase
does the fetch and then updates your local commits.

$ git svn rebase

 M autogen.sh

r88 = c9c5f83c64bd755368784b444bc7a0216cc1e17b

(refs/remotes/origin/trunk)

First, rewinding head to replay your work on top of it...

Fast-forwarded master to refs/remotes/origin/trunk.

349

Running git svn rebase every once in a while makes sure your code is always up to date. You need
to be sure your working directory is clean when you run this, though. If you have local changes, you
must either stash your work or temporarily commit it before running git svn rebase – otherwise,
the command will stop if it sees that the rebase will result in a merge conflict.

Git Branching Issues

When you’ve become comfortable with a Git workflow, you’ll likely create topic branches, do work
on them, and then merge them in. If you’re pushing to a Subversion server via git svn, you may
want to rebase your work onto a single branch each time instead of merging branches together. The
reason to prefer rebasing is that Subversion has a linear history and doesn’t deal with merges like Git
does, so git svn follows only the first parent when converting the snapshots into Subversion
commits.

Suppose your history looks like the following: you created an experiment branch, did two commits,
and then merged them back into master. When you dcommit, you see output like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

 M CHANGES.txt

Committed r89

 M CHANGES.txt

r89 = 89d492c884ea7c834353563d5d913c6adf933981

(refs/remotes/origin/trunk)

 M COPYING.txt

 M INSTALL.txt

Committed r90

 M INSTALL.txt

 M COPYING.txt

r90 = cb522197870e61467473391799148f6721bcf9a0

(refs/remotes/origin/trunk)

No changes between 71af502c214ba13123992338569f4669877f55fd and

refs/remotes/origin/trunk

Resetting to the latest refs/remotes/origin/trunk

Running dcommit on a branch with merged history works fine, except that when you look at your Git
project history, it hasn’t rewritten either of the commits you made on the experiment branch –
instead, all those changes appear in the SVN version of the single merge commit.

When someone else clones that work, all they see is the merge commit with all the work squashed into
it, as though you ran git merge --squash; they don’t see the commit data about where it came
from or when it was committed.

Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using it much, that’s
probably best. However, you can create and commit to branches in Subversion using git svn.

350

Creating a New SVN Branch

To create a new branch in Subversion, you run git svn branch [branchname]:

$ git svn branch opera

Copying file:///tmp/test-svn/trunk at r90 to file:///tmp/test-

svn/branches/opera...

Found possible branch point: file:///tmp/test-svn/trunk =>

file:///tmp/test-svn/branches/opera, 90

Found branch parent: (refs/remotes/origin/opera)

cb522197870e61467473391799148f6721bcf9a0

Following parent with do_switch

Successfully followed parent

r91 = f1b64a3855d3c8dd84ee0ef10fa89d27f1584302

(refs/remotes/origin/opera)

This does the equivalent of the svn copy trunk branches/opera command in Subversion and
operates on the Subversion server. It’s important to note that it doesn’t check you out into that
branch; if you commit at this point, that commit will go to trunk on the server, not opera.

Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your Subversion
branches in your history – you should have only one, and it should be the last one with a git-svn-id
in your current branch history.

If you want to work on more than one branch simultaneously, you can set up local branches to
dcommit to specific Subversion branches by starting them at the imported Subversion commit for that
branch. If you want an opera branch that you can work on separately, you can run

$ git branch opera remotes/origin/opera

Now, if you want to merge your opera branch into trunk (your master branch), you can do so with a
normal git merge. But you need to provide a descriptive commit message (via -m), or the merge will
say “Merge branch opera” instead of something useful.

Remember that although you’re using git merge to do this operation, and the merge likely will be
much easier than it would be in Subversion (because Git will automatically detect the appropriate
merge base for you), this isn’t a normal Git merge commit. You have to push this data back to a
Subversion server that can’t handle a commit that tracks more than one parent; so, after you push it
up, it will look like a single commit that squashed in all the work of another branch under a single
commit. After you merge one branch into another, you can’t easily go back and continue working on
that branch, as you normally can in Git. The dcommit command that you run erases any information
that says what branch was merged in, so subsequent merge-base calculations will be wrong – the
dcommit makes your git merge result look like you ran git merge --squash. Unfortunately,
there’s no good way to avoid this situation – Subversion can’t store this information, so you’ll
always be crippled by its limitations while you’re using it as your server. To avoid issues, you should
delete the local branch (in this case, opera) after you merge it into trunk.

351

Subversion Commands

The git svn toolset provides a number of commands to help ease the transition to Git by providing
some functionality that’s similar to what you had in Subversion. Here are a few commands that give
you what Subversion used to.

SVN Style History

If you’re used to Subversion and want to see your history in SVN output style, you can run git svn
log to view your commit history in SVN formatting:

$ git svn log

--

r87 | schacon | 2014-05-02 16:07:37 -0700 (Sat, 02 May 2014) | 2 lines

autogen change

--

r86 | schacon | 2014-05-02 16:00:21 -0700 (Sat, 02 May 2014) | 2 lines

Merge branch 'experiment'

--

r85 | schacon | 2014-05-02 16:00:09 -0700 (Sat, 02 May 2014) | 2 lines

updated the changelog

You should know two important things about git svn log. First, it works offline, unlike the real svn
log command, which asks the Subversion server for the data. Second, it only shows you commits that
have been committed up to the Subversion server. Local Git commits that you haven’t dcommited
don’t show up; neither do commits that people have made to the Subversion server in the
meantime. It’s more like the last known state of the commits on the Subversion server.

SVN Annotation

Much as the git svn log command simulates the svn log command offline, you can get the
equivalent of svn annotate by running git svn blame [FILE]. The output looks like this:

352

$ git svn blame README.txt

 2 temporal Protocol Buffers - Google's data interchange format

 2 temporal Copyright 2008 Google Inc.

 2 temporal http://code.google.com/apis/protocolbuffers/

 2 temporal

22 temporal C++ Installation - Unix

22 temporal =======================

 2 temporal

79 schacon Committing in git-svn.

78 schacon

 2 temporal To build and install the C++ Protocol Buffer runtime and

the Protocol

 2 temporal Buffer compiler (protoc) execute the following:

 2 temporal

Again, it doesn’t show commits that you did locally in Git or that have been pushed to Subversion in
the meantime.

SVN Server Information

You can also get the same sort of information that svn info gives you by running git svn info:

$ git svn info

Path: .

URL: https://schacon-test.googlecode.com/svn/trunk

Repository Root: https://schacon-test.googlecode.com/svn

Repository UUID: 4c93b258-373f-11de-be05-5f7a86268029

Revision: 87

Node Kind: directory

Schedule: normal

Last Changed Author: schacon

Last Changed Rev: 87

Last Changed Date: 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009)

This is like blame and log in that it runs offline and is up to date only as of the last time you
communicated with the Subversion server.

Ignoring What Subversion Ignores

If you clone a Subversion repository that has svn:ignore properties set anywhere, you’ll likely want
to set corresponding .gitignore files so you don’t accidentally commit files that you shouldn’t.
git svn has two commands to help with this issue. The first is git svn create-ignore, which
automatically creates corresponding .gitignore files for you so your next commit can include them.

The second command is git svn show-ignore, which prints to stdout the lines you need to put in a
.gitignore file so you can redirect the output into your project exclude file:

$ git svn show-ignore > .git/info/exclude

353

That way, you don’t litter the project with .gitignore files. This is a good option if you’re the only
Git user on a Subversion team, and your teammates don’t want .gitignore files in the project.

Git-Svn Summary

The git svn tools are useful if you’re stuck with a Subversion server, or are otherwise in a
development environment that necessitates running a Subversion server. You should consider it
crippled Git, however, or you’ll hit issues in translation that may confuse you and your collaborators.
To stay out of trouble, try to follow these guidelines:

• Keep a linear Git history that doesn’t contain merge commits made by git merge. Rebase any
work you do outside of your mainline branch back onto it; don’t merge it in.

• Don’t set up and collaborate on a separate Git server. Possibly have one to speed up clones for
new developers, but don’t push anything to it that doesn’t have a git-svn-id entry. You may
even want to add a pre-receive hook that checks each commit message for a git-svn-id and
rejects pushes that contain commits without it.

If you follow those guidelines, working with a Subversion server can be more bearable. However, if
it’s possible to move to a real Git server, doing so can gain your team a lot more.

Git and Mercurial
 The DVCS universe is larger than just Git. In fact, there are many other systems in this space, each
with their own angle on how to do distributed version control correctly. Apart from Git, the most
popular is Mercurial, and the two are very similar in many respects.

The good news, if you prefer Git’s client-side behavior but are working with a project whose source
code is controlled with Mercurial, is that there’s a way to use Git as a client for a Mercurial-hosted
repository. Since the way Git talks to server repositories is through remotes, it should come as no
surprise that this bridge is implemented as a remote helper. The project’s name is git-remote-hg, and
it can be found at https://github.com/felipec/git-remote-hg.

git-remote-hg

First, you need to install git-remote-hg. This basically entails dropping its file somewhere in your path,
like so:

$ curl -o ~/bin/git-remote-hg \

 https://raw.githubusercontent.com/felipec/git-remote-hg/master/git-

remote-hg

$ chmod +x ~/bin/git-remote-hg

…assuming ~/bin is in your $PATH. Git-remote-hg has one other dependency: the mercurial library
for Python. If you have Python installed, this is as simple as:

$ pip install mercurial

(If you don’t have Python installed, visit https://www.python.org/ and get it first.)

354

https://github.com/felipec/git-remote-hg
https://www.python.org/

The last thing you’ll need is the Mercurial client. Go to http://mercurial.selenic.com/ and install it if
you haven’t already.

Now you’re ready to rock. All you need is a Mercurial repository you can push to. Fortunately, every
Mercurial repository can act this way, so we’ll just use the "hello world" repository everyone uses to
learn Mercurial:

$ hg clone http://selenic.com/repo/hello /tmp/hello

Getting Started

Now that we have a suitable “server-side” repository, we can go through a typical workflow. As
you’ll see, these two systems are similar enough that there isn’t much friction.

As always with Git, first we clone:

$ git clone hg::/tmp/hello /tmp/hello-git

$ cd /tmp/hello-git

$ git log --oneline --graph --decorate

* ac7955c (HEAD, origin/master, origin/branches/default, origin/HEAD,

refs/hg/origin/branches/default, refs/hg/origin/bookmarks/master,

master) Create a makefile

* 65bb417 Create a standard "hello, world" program

You’ll notice that working with a Mercurial repository uses the standard git clone command.
That’s because git-remote-hg is working at a fairly low level, using a similar mechanism to how Git’s
HTTP/S protocol is implemented (remote helpers). Since Git and Mercurial are both designed for every
client to have a full copy of the repository history, this command makes a full clone, including all the
project’s history, and does it fairly quickly.

The log command shows two commits, the latest of which is pointed to by a whole slew of refs. It turns
out some of these aren’t actually there. Let’s take a look at what’s actually in the .git directory:

355

http://mercurial.selenic.com/

$ tree .git/refs

.git/refs

├── heads

│ └── master

├── hg

│ └── origin

│ ├── bookmarks

│ │ └── master

│ └── branches

│ └── default

├── notes

│ └── hg

├── remotes

│ └── origin

│ └── HEAD

└── tags

9 directories, 5 files

Git-remote-hg is trying to make things more idiomatically Git-esque, but under the hood it’s
managing the conceptual mapping between two slightly different systems. The refs/hg directory is
where the actual remote refs are stored. For example, the refs/hg/origin/branches/default is a
Git ref file that contains the SHA-1 starting with “ac7955c”, which is the commit that master points
to. So the refs/hg directory is kind of like a fake refs/remotes/origin, but it has the added
distinction between bookmarks and branches.

The notes/hg file is the starting point for how git-remote-hg maps Git commit hashes to Mercurial
changeset IDs. Let’s explore a bit:

$ cat notes/hg

d4c10386...

$ git cat-file -p d4c10386...

tree 1781c96...

author remote-hg <> 1408066400 -0800

committer remote-hg <> 1408066400 -0800

Notes for master

$ git ls-tree 1781c96...

100644 blob ac9117f... 65bb417...

100644 blob 485e178... ac7955c...

$ git cat-file -p ac9117f

0a04b987be5ae354b710cefeba0e2d9de7ad41a9

So refs/notes/hg points to a tree, which in the Git object database is a list of other objects with
names. git ls-tree outputs the mode, type, object hash, and filename for items inside a tree. Once
we dig down to one of the tree items, we find that inside it is a blob named “ac9117f” (the SHA-1

356

hash of the commit pointed to by master), with contents “0a04b98” (which is the ID of the Mercurial
changeset at the tip of the default branch).

The good news is that we mostly don’t have to worry about all of this. The typical workflow won’t
be very different from working with a Git remote.

There’s one more thing we should attend to before we continue: ignores. Mercurial and Git use a very
similar mechanism for this, but it’s likely you don’t want to actually commit a .gitignore file into
a Mercurial repository. Fortunately, Git has a way to ignore files that’s local to an on-disk repository,
and the Mercurial format is compatible with Git, so you just have to copy it over:

$ cp .hgignore .git/info/exclude

The .git/info/exclude file acts just like a .gitignore, but isn’t included in commits.

Workflow

Let’s assume we’ve done some work and made some commits on the master branch, and you’re
ready to push it to the remote repository. Here’s what our repository looks like right now:

$ git log --oneline --graph --decorate

* ba04a2a (HEAD, master) Update makefile

* d25d16f Goodbye

* ac7955c (origin/master, origin/branches/default, origin/HEAD,

refs/hg/origin/branches/default, refs/hg/origin/bookmarks/master) Create

a makefile

* 65bb417 Create a standard "hello, world" program

Our master branch is two commits ahead of origin/master, but those two commits exist only on
our local machine. Let’s see if anyone else has been doing important work at the same time:

$ git fetch

From hg::/tmp/hello

 ac7955c..df85e87 master -> origin/master

 ac7955c..df85e87 branches/default -> origin/branches/default

$ git log --oneline --graph --decorate --all

* 7b07969 (refs/notes/hg) Notes for default

* d4c1038 Notes for master

* df85e87 (origin/master, origin/branches/default, origin/HEAD,

refs/hg/origin/branches/default, refs/hg/origin/bookmarks/master) Add

some documentation

| * ba04a2a (HEAD, master) Update makefile

| * d25d16f Goodbye

|/

* ac7955c Create a makefile

* 65bb417 Create a standard "hello, world" program

Since we used the --all flag, we see the “notes” refs that are used internally by git-remote-hg, but

357

we can ignore them. The rest is what we expected; origin/master has advanced by one commit, and
our history has now diverged. Unlike the other systems we work with in this chapter, Mercurial is
capable of handling merges, so we’re not going to do anything fancy.

$ git merge origin/master

Auto-merging hello.c

Merge made by the 'recursive' strategy.

 hello.c | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

$ git log --oneline --graph --decorate

* 0c64627 (HEAD, master) Merge remote-tracking branch 'origin/master'

|\

| * df85e87 (origin/master, origin/branches/default, origin/HEAD,

refs/hg/origin/branches/default, refs/hg/origin/bookmarks/master) Add

some documentation

* | ba04a2a Update makefile

* | d25d16f Goodbye

|/

* ac7955c Create a makefile

* 65bb417 Create a standard "hello, world" program

Perfect. We run the tests and everything passes, so we’re ready to share our work with the rest of the
team:

$ git push

To hg::/tmp/hello

 df85e87..0c64627 master -> master

That’s it! If you take a look at the Mercurial repository, you’ll see that this did what we’d expect:

$ hg log -G --style compact

o 5[tip]:4,2 dc8fa4f932b8 2014-08-14 19:33 -0700 ben

|\ Merge remote-tracking branch 'origin/master'

| |

| o 4 64f27bcefc35 2014-08-14 19:27 -0700 ben

| | Update makefile

| |

| o 3:1 4256fc29598f 2014-08-14 19:27 -0700 ben

| | Goodbye

| |

@ | 2 7db0b4848b3c 2014-08-14 19:30 -0700 ben

|/ Add some documentation

|

o 1 82e55d328c8c 2005-08-26 01:21 -0700 mpm

| Create a makefile

|

o 0 0a04b987be5a 2005-08-26 01:20 -0700 mpm

 Create a standard "hello, world" program

358

The changeset numbered 2 was made by Mercurial, and the changesets numbered 3 and 4 were made
by git-remote-hg, by pushing commits made with Git.

Branches and Bookmarks

Git has only one kind of branch: a reference that moves when commits are made. In Mercurial, this
kind of a reference is called a “bookmark,” and it behaves in much the same way as a Git branch.

Mercurial’s concept of a “branch” is more heavyweight. The branch that a changeset is made on is
recorded with the changeset, which means it will always be in the repository history. Here’s an
example of a commit that was made on the develop branch:

$ hg log -l 1

changeset: 6:8f65e5e02793

branch: develop

tag: tip

user: Ben Straub <ben@straub.cc>

date: Thu Aug 14 20:06:38 2014 -0700

summary: More documentation

Note the line that begins with “branch”. Git can’t really replicate this (and doesn’t need to; both
types of branch can be represented as a Git ref), but git-remote-hg needs to understand the difference,
because Mercurial cares.

Creating Mercurial bookmarks is as easy as creating Git branches. On the Git side:

$ git checkout -b featureA

Switched to a new branch 'featureA'

$ git push origin featureA

To hg::/tmp/hello

 * [new branch] featureA -> featureA

That’s all there is to it. On the Mercurial side, it looks like this:

359

$ hg bookmarks

 featureA 5:bd5ac26f11f9

$ hg log --style compact -G

@ 6[tip] 8f65e5e02793 2014-08-14 20:06 -0700 ben

| More documentation

|

o 5[featureA]:4,2 bd5ac26f11f9 2014-08-14 20:02 -0700 ben

|\ Merge remote-tracking branch 'origin/master'

| |

| o 4 0434aaa6b91f 2014-08-14 20:01 -0700 ben

| | update makefile

| |

| o 3:1 318914536c86 2014-08-14 20:00 -0700 ben

| | goodbye

| |

o | 2 f098c7f45c4f 2014-08-14 20:01 -0700 ben

|/ Add some documentation

|

o 1 82e55d328c8c 2005-08-26 01:21 -0700 mpm

| Create a makefile

|

o 0 0a04b987be5a 2005-08-26 01:20 -0700 mpm

 Create a standard "hello, world" program

Note the new [featureA] tag on revision 5. These act exactly like Git branches on the Git side, with
one exception: you can’t delete a bookmark from the Git side (this is a limitation of remote helpers).

You can work on a “heavyweight” Mercurial branch also: just put a branch in the branches
namespace:

$ git checkout -b branches/permanent

Switched to a new branch 'branches/permanent'

$ vi Makefile

$ git commit -am 'A permanent change'

$ git push origin branches/permanent

To hg::/tmp/hello

 * [new branch] branches/permanent -> branches/permanent

Here’s what that looks like on the Mercurial side:

360

$ hg branches

permanent 7:a4529d07aad4

develop 6:8f65e5e02793

default 5:bd5ac26f11f9 (inactive)

$ hg log -G

o changeset: 7:a4529d07aad4

| branch: permanent

| tag: tip

| parent: 5:bd5ac26f11f9

| user: Ben Straub <ben@straub.cc>

| date: Thu Aug 14 20:21:09 2014 -0700

| summary: A permanent change

|

| @ changeset: 6:8f65e5e02793

|/ branch: develop

| user: Ben Straub <ben@straub.cc>

| date: Thu Aug 14 20:06:38 2014 -0700

| summary: More documentation

|

o changeset: 5:bd5ac26f11f9

|\ bookmark: featureA

| | parent: 4:0434aaa6b91f

| | parent: 2:f098c7f45c4f

| | user: Ben Straub <ben@straub.cc>

| | date: Thu Aug 14 20:02:21 2014 -0700

| | summary: Merge remote-tracking branch 'origin/master'

[...]

The branch name “permanent” was recorded with the changeset marked 7.

From the Git side, working with either of these branch styles is the same: just checkout, commit, fetch,
merge, pull, and push as you normally would. One thing you should know is that Mercurial doesn’t
support rewriting history, only adding to it. Here’s what our Mercurial repository looks like after an
interactive rebase and a force-push:

361

$ hg log --style compact -G

o 10[tip] 99611176cbc9 2014-08-14 20:21 -0700 ben

| A permanent change

|

o 9 f23e12f939c3 2014-08-14 20:01 -0700 ben

| Add some documentation

|

o 8:1 c16971d33922 2014-08-14 20:00 -0700 ben

| goodbye

|

| o 7:5 a4529d07aad4 2014-08-14 20:21 -0700 ben

| | A permanent change

| |

| | @ 6 8f65e5e02793 2014-08-14 20:06 -0700 ben

| |/ More documentation

| |

| o 5[featureA]:4,2 bd5ac26f11f9 2014-08-14 20:02 -0700 ben

| |\ Merge remote-tracking branch 'origin/master'

| | |

| | o 4 0434aaa6b91f 2014-08-14 20:01 -0700 ben

| | | update makefile

| | |

+---o 3:1 318914536c86 2014-08-14 20:00 -0700 ben

| | goodbye

| |

| o 2 f098c7f45c4f 2014-08-14 20:01 -0700 ben

|/ Add some documentation

|

o 1 82e55d328c8c 2005-08-26 01:21 -0700 mpm

| Create a makefile

|

o 0 0a04b987be5a 2005-08-26 01:20 -0700 mpm

 Create a standard "hello, world" program

Changesets 8, 9, and 10 have been created and belong to the permanent branch, but the old
changesets are still there. This can be very confusing for your teammates who are using Mercurial, so
try to avoid it.

Mercurial Summary

Git and Mercurial are similar enough that working across the boundary is fairly painless. If you avoid
changing history that’s left your machine (as is generally recommended), you may not even be aware
that the other end is Mercurial.

Git and Perforce
 Perforce is a very popular version-control system in corporate environments. It’s been around
since 1995, which makes it the oldest system covered in this chapter. As such, it’s designed with the
constraints of its day; it assumes you’re always connected to a single central server, and only one
version is kept on the local disk. To be sure, its features and constraints are well-suited to several
specific problems, but there are lots of projects using Perforce where Git would actually work better.

362

There are two options if you’d like to mix your use of Perforce and Git. The first one we’ll cover is
the “Git Fusion” bridge from the makers of Perforce, which lets you expose subtrees of your Perforce
depot as read-write Git repositories. The second is git-p4, a client-side bridge that lets you use Git as a
Perforce client, without requiring any reconfiguration of the Perforce server.

Git Fusion

 Perforce provides a product called Git Fusion (available at http://www.perforce.com/git-fusion),
which synchronizes a Perforce server with Git repositories on the server side.

Setting Up

For our examples, we’ll be using the easiest installation method for Git Fusion, which is downloading
a virtual machine that runs the Perforce daemon and Git Fusion. You can get the virtual machine
image from http://www.perforce.com/downloads/Perforce/20-User, and once it’s finished
downloading, import it into your favorite virtualization software (we’ll use VirtualBox).

Upon first starting the machine, it asks you to customize the password for three Linux users (root,
perforce, and git), and provide an instance name, which can be used to distinguish this installation
from others on the same network. When that has all completed, you’ll see this:

圖表 145. The Git Fusion virtual machine boot screen.

363

http://www.perforce.com/git-fusion
http://www.perforce.com/downloads/Perforce/20-User

You should take note of the IP address that’s shown here, we’ll be using it later on. Next, we’ll
create a Perforce user. Select the “Login” option at the bottom and press enter (or SSH to the
machine), and log in as root. Then use these commands to create a user:

$ p4 -p localhost:1666 -u super user -f john

$ p4 -p localhost:1666 -u john passwd

$ exit

The first one will open a VI editor to customize the user, but you can accept the defaults by typing :wq
and hitting enter. The second one will prompt you to enter a password twice. That’s all we need to do
with a shell prompt, so exit out of the session.

The next thing you’ll need to do to follow along is to tell Git not to verify SSL certificates. The Git
Fusion image comes with a certificate, but it’s for a domain that won’t match your virtual
machine’s IP address, so Git will reject the HTTPS connection. If this is going to be a permanent
installation, consult the Perforce Git Fusion manual to install a different certificate; for our example
purposes, this will suffice:

$ export GIT_SSL_NO_VERIFY=true

Now we can test that everything is working.

$ git clone https://10.0.1.254/Talkhouse

Cloning into 'Talkhouse'...

Username for 'https://10.0.1.254': john

Password for 'https://john@10.0.1.254':

remote: Counting objects: 630, done.

remote: Compressing objects: 100% (581/581), done.

remote: Total 630 (delta 172), reused 0 (delta 0)

Receiving objects: 100% (630/630), 1.22 MiB | 0 bytes/s, done.

Resolving deltas: 100% (172/172), done.

Checking connectivity... done.

The virtual-machine image comes equipped with a sample project that you can clone. Here we’re
cloning over HTTPS, with the john user that we created above; Git asks for credentials for this
connection, but the credential cache will allow us to skip this step for any subsequent requests.

Fusion Configuration

Once you’ve got Git Fusion installed, you’ll want to tweak the configuration. This is actually fairly
easy to do using your favorite Perforce client; just map the //.git-fusion directory on the Perforce
server into your workspace. The file structure looks like this:

364

$ tree

.

├── objects

│ ├── repos

│ │ └── [...]

│ └── trees

│ └── [...]
│
├── p4gf_config

├── repos

│ └── Talkhouse

│ └── p4gf_config

└── users

 └── p4gf_usermap

498 directories, 287 files

The objects directory is used internally by Git Fusion to map Perforce objects to Git and vice versa,
you won’t have to mess with anything in there. There’s a global p4gf_config file in this directory,
as well as one for each repository – these are the configuration files that determine how Git Fusion
behaves. Let’s take a look at the file in the root:

[repo-creation]

charset = utf8

[git-to-perforce]

change-owner = author

enable-git-branch-creation = yes

enable-swarm-reviews = yes

enable-git-merge-commits = yes

enable-git-submodules = yes

preflight-commit = none

ignore-author-permissions = no

read-permission-check = none

git-merge-avoidance-after-change-num = 12107

[perforce-to-git]

http-url = none

ssh-url = none

[@features]

imports = False

chunked-push = False

matrix2 = False

parallel-push = False

[authentication]

email-case-sensitivity = no

We won’t go into the meanings of these flags here, but note that this is just an INI-formatted text file,

365

much like Git uses for configuration. This file specifies the global options, which can then be
overridden by repository-specific configuration files, like repos/Talkhouse/p4gf_config. If you
open this file, you’ll see a [@repo] section with some settings that are different from the global
defaults. You’ll also see sections that look like this:

[Talkhouse-master]

git-branch-name = master

view = //depot/Talkhouse/main-dev/... ...

This is a mapping between a Perforce branch and a Git branch. The section can be named whatever
you like, so long as the name is unique. git-branch-name lets you convert a depot path that would
be cumbersome under Git to a more friendly name. The view setting controls how Perforce files are
mapped into the Git repository, using the standard view mapping syntax. More than one mapping can
be specified, like in this example:

[multi-project-mapping]

git-branch-name = master

view = //depot/project1/main/... project1/...

 //depot/project2/mainline/... project2/...

This way, if your normal workspace mapping includes changes in the structure of the directories, you
can replicate that with a Git repository.

The last file we’ll discuss is users/p4gf_usermap, which maps Perforce users to Git users, and
which you may not even need. When converting from a Perforce changeset to a Git commit, Git
Fusion’s default behavior is to look up the Perforce user, and use the email address and full name
stored there for the author/committer field in Git. When converting the other way, the default is to look
up the Perforce user with the email address stored in the Git commit’s author field, and submit the
changeset as that user (with permissions applying). In most cases, this behavior will do just fine, but
consider the following mapping file:

john john@example.com "John Doe"

john johnny@appleseed.net "John Doe"

bob employeeX@example.com "Anon X. Mouse"

joe employeeY@example.com "Anon Y. Mouse"

Each line is of the format <user> <email> "<full name>", and creates a single user mapping. The
first two lines map two distinct email addresses to the same Perforce user account. This is useful if
you’ve created Git commits under several different email addresses (or change email addresses), but
want them to be mapped to the same Perforce user. When creating a Git commit from a Perforce
changeset, the first line matching the Perforce user is used for Git authorship information.

The last two lines mask Bob and Joe’s actual names and email addresses from the Git commits that
are created. This is nice if you want to open-source an internal project, but don’t want to publish
your employee directory to the entire world. Note that the email addresses and full names should be
unique, unless you want all the Git commits to be attributed to a single fictional author.

366

Workflow

Perforce Git Fusion is a two-way bridge between Perforce and Git version control. Let’s have a look at
how it feels to work from the Git side. We’ll assume we’ve mapped in the “Jam” project using a
configuration file as shown above, which we can clone like this:

$ git clone https://10.0.1.254/Jam

Cloning into 'Jam'...

Username for 'https://10.0.1.254': john

Password for 'https://ben@10.0.1.254':

remote: Counting objects: 2070, done.

remote: Compressing objects: 100% (1704/1704), done.

Receiving objects: 100% (2070/2070), 1.21 MiB | 0 bytes/s, done.

remote: Total 2070 (delta 1242), reused 0 (delta 0)

Resolving deltas: 100% (1242/1242), done.

Checking connectivity... done.

$ git branch -a

* master

 remotes/origin/HEAD -> origin/master

 remotes/origin/master

 remotes/origin/rel2.1

$ git log --oneline --decorate --graph --all

* 0a38c33 (origin/rel2.1) Create Jam 2.1 release branch.

| * d254865 (HEAD, origin/master, origin/HEAD, master) Upgrade to latest

metrowerks on Beos -- the Intel one.

| * bd2f54a Put in fix for jam's NT handle leak.

| * c0f29e7 Fix URL in a jam doc

| * cc644ac Radstone's lynx port.

[...]

The first time you do this, it may take some time. What’s happening is that Git Fusion is converting all
the applicable changesets in the Perforce history into Git commits. This happens locally on the server,
so it’s relatively fast, but if you have a lot of history, it can still take some time. Subsequent fetches do
incremental conversion, so it’ll feel more like Git’s native speed.

As you can see, our repository looks exactly like any other Git repository you might work with. There
are three branches, and Git has helpfully created a local master branch that tracks origin/master.
Let’s do a bit of work, and create a couple of new commits:

...

$ git log --oneline --decorate --graph --all

* cfd46ab (HEAD, master) Add documentation for new feature

* a730d77 Whitespace

* d254865 (origin/master, origin/HEAD) Upgrade to latest metrowerks on

Beos -- the Intel one.

* bd2f54a Put in fix for jam's NT handle leak.

[...]

We have two new commits. Now let’s check if anyone else has been working:

367

$ git fetch

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From https://10.0.1.254/Jam

 d254865..6afeb15 master -> origin/master

$ git log --oneline --decorate --graph --all

* 6afeb15 (origin/master, origin/HEAD) Update copyright

| * cfd46ab (HEAD, master) Add documentation for new feature

| * a730d77 Whitespace

|/

* d254865 Upgrade to latest metrowerks on Beos -- the Intel one.

* bd2f54a Put in fix for jam's NT handle leak.

[...]

It looks like someone was! You wouldn’t know it from this view, but the 6afeb15 commit was
actually created using a Perforce client. It just looks like another commit from Git’s point of view,
which is exactly the point. Let’s see how the Perforce server deals with a merge commit:

$ git merge origin/master

Auto-merging README

Merge made by the 'recursive' strategy.

 README | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

$ git push

Counting objects: 9, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (9/9), done.

Writing objects: 100% (9/9), 917 bytes | 0 bytes/s, done.

Total 9 (delta 6), reused 0 (delta 0)

remote: Perforce: 100% (3/3) Loading commit tree into memory...

remote: Perforce: 100% (5/5) Finding child commits...

remote: Perforce: Running git fast-export...

remote: Perforce: 100% (3/3) Checking commits...

remote: Processing will continue even if connection is closed.

remote: Perforce: 100% (3/3) Copying changelists...

remote: Perforce: Submitting new Git commit objects to Perforce: 4

To https://10.0.1.254/Jam

 6afeb15..89cba2b master -> master

Git thinks it worked. Let’s take a look at the history of the README file from Perforce’s point of view,
using the revision graph feature of p4v:

368

圖表 146. Perforce revision graph resulting from Git push.

If you’ve never seen this view before, it may seem confusing, but it shows the same concepts as a
graphical viewer for Git history. We’re looking at the history of the README file, so the directory tree
at top left only shows that file as it surfaces in various branches. At top right, we have a visual graph of
how different revisions of the file are related, and the big-picture view of this graph is at bottom right.
The rest of the view is given to the details view for the selected revision (2 in this case).

One thing to notice is that the graph looks exactly like the one in Git’s history. Perforce didn’t have a
named branch to store the 1 and 2 commits, so it made an “anonymous” branch in the .git-
fusion directory to hold it. This will also happen for named Git branches that don’t correspond to a
named Perforce branch (and you can later map them to a Perforce branch using the configuration file).

Most of this happens behind the scenes, but the end result is that one person on a team can be using
Git, another can be using Perforce, and neither of them will know about the other’s choice.

Git-Fusion Summary

If you have (or can get) access to your Perforce server, Git Fusion is a great way to make Git and
Perforce talk to each other. There’s a bit of configuration involved, but the learning curve isn’t very
steep. This is one of the few sections in this chapter where cautions about using Git’s full power will
not appear. That’s not to say that Perforce will be happy with everything you throw at it – if you try to
rewrite history that’s already been pushed, Git Fusion will reject it – but Git Fusion tries very hard to
feel native. You can even use Git submodules (though they’ll look strange to Perforce users), and
merge branches (this will be recorded as an integration on the Perforce side).

If you can’t convince the administrator of your server to set up Git Fusion, there is still a way to use
these tools together.

Git-p4

 Git-p4 is a two-way bridge between Git and Perforce. It runs entirely inside your Git repository, so you

369

won’t need any kind of access to the Perforce server (other than user credentials, of course). Git-p4
isn’t as flexible or complete a solution as Git Fusion, but it does allow you to do most of what you’d
want to do without being invasive to the server environment.

筆記 You’ll need the p4 tool somewhere in your PATH to work with git-p4. As of this writing,
it is freely available at http://www.perforce.com/downloads/Perforce/20-User.

Setting Up

For example purposes, we’ll be running the Perforce server from the Git Fusion OVA as shown above,
but we’ll bypass the Git Fusion server and go directly to the Perforce version control.

In order to use the p4 command-line client (which git-p4 depends on), you’ll need to set a couple of
environment variables:

$ export P4PORT=10.0.1.254:1666

$ export P4USER=john

Getting Started

As with anything in Git, the first command is to clone:

$ git p4 clone //depot/www/live www-shallow

Importing from //depot/www/live into www-shallow

Initialized empty Git repository in /private/tmp/www-shallow/.git/

Doing initial import of //depot/www/live/ from revision #head into

refs/remotes/p4/master

This creates what in Git terms is a “shallow” clone; only the very latest Perforce revision is imported
into Git; remember, Perforce isn’t designed to give every revision to every user. This is enough to use
Git as a Perforce client, but for other purposes it’s not enough.

Once it’s finished, we have a fully-functional Git repository:

$ cd myproject

$ git log --oneline --all --graph --decorate

* 70eaf78 (HEAD, p4/master, p4/HEAD, master) Initial import of

//depot/www/live/ from the state at revision #head

Note how there’s a “p4” remote for the Perforce server, but everything else looks like a standard
clone. Actually, that’s a bit misleading; there isn’t actually a remote there.

$ git remote -v

No remotes exist in this repository at all. Git-p4 has created some refs to represent the state of the
server, and they look like remote refs to git log, but they’re not managed by Git itself, and you
can’t push to them.

370

http://www.perforce.com/downloads/Perforce/20-User

Workflow

Okay, let’s do some work. Let’s assume you’ve made some progress on a very important feature,
and you’re ready to show it to the rest of your team.

$ git log --oneline --all --graph --decorate

* 018467c (HEAD, master) Change page title

* c0fb617 Update link

* 70eaf78 (p4/master, p4/HEAD) Initial import of //depot/www/live/ from

the state at revision #head

We’ve made two new commits that we’re ready to submit to the Perforce server. Let’s check if
anyone else was working today:

$ git p4 sync

git p4 sync

Performing incremental import into refs/remotes/p4/master git branch

Depot paths: //depot/www/live/

Import destination: refs/remotes/p4/master

Importing revision 12142 (100%)

$ git log --oneline --all --graph --decorate

* 75cd059 (p4/master, p4/HEAD) Update copyright

| * 018467c (HEAD, master) Change page title

| * c0fb617 Update link

|/

* 70eaf78 Initial import of //depot/www/live/ from the state at revision

#head

Looks like they were, and master and p4/master have diverged. Perforce’s branching system is
nothing like Git’s, so submitting merge commits doesn’t make any sense. Git-p4 recommends that
you rebase your commits, and even comes with a shortcut to do so:

$ git p4 rebase

Performing incremental import into refs/remotes/p4/master git branch

Depot paths: //depot/www/live/

No changes to import!

Rebasing the current branch onto remotes/p4/master

First, rewinding head to replay your work on top of it...

Applying: Update link

Applying: Change page title

 index.html | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

You can probably tell from the output, but git p4 rebase is a shortcut for git p4 sync followed by
git rebase p4/master. It’s a bit smarter than that, especially when working with multiple
branches, but this is a good approximation.

Now our history is linear again, and we’re ready to contribute our changes back to Perforce. The git
p4 submit command will try to create a new Perforce revision for every Git commit between

371

p4/master and master. Running it drops us into our favorite editor, and the contents of the file look
something like this:

372

A Perforce Change Specification.

#

Change: The change number. 'new' on a new changelist.

Date: The date this specification was last modified.

Client: The client on which the changelist was created. Read-

only.

User: The user who created the changelist.

Status: Either 'pending' or 'submitted'. Read-only.

Type: Either 'public' or 'restricted'. Default is 'public'.

Description: Comments about the changelist. Required.

Jobs: What opened jobs are to be closed by this changelist.

You may delete jobs from this list. (New changelists

only.)

Files: What opened files from the default changelist are to be

added

to this changelist. You may delete files from this

list.

(New changelists only.)

Change: new

Client: john_bens-mbp_8487

User: john

Status: new

Description:

 Update link

Files:

 //depot/www/live/index.html # edit

######## git author ben@straub.cc does not match your p4 account.

######## Use option --preserve-user to modify authorship.

######## Variable git-p4.skipUserNameCheck hides this message.

######## everything below this line is just the diff #######

--- //depot/www/live/index.html 2014-08-31 18:26:05.000000000 0000

+++ /Users/ben/john_bens-mbp_8487/john_bens-

mbp_8487/depot/www/live/index.html 2014-08-31 18:26:05.000000000 0000

@@ -60,7 +60,7 @@

 </td>

 <td valign=top>

 Source and documentation for

-

+

 Jam/MR,

 a software build tool.

 </td>

373

This is mostly the same content you’d see by running p4 submit, except the stuff at the end which
git-p4 has helpfully included. Git-p4 tries to honor your Git and Perforce settings individually when it
has to provide a name for a commit or changeset, but in some cases you want to override it. For
example, if the Git commit you’re importing was written by a contributor who doesn’t have a
Perforce user account, you may still want the resulting changeset to look like they write it (and not
you).

Git-p4 has helpfully imported the message from the Git commit as the content for this Perforce
changeset, so all we have to do is save and quit, twice (once for each commit). The resulting shell
output will look something like this:

$ git p4 submit

Perforce checkout for depot path //depot/www/live/ located at

/Users/ben/john_bens-mbp_8487/john_bens-mbp_8487/depot/www/live/

Synchronizing p4 checkout...

... - file(s) up-to-date.

Applying dbac45b Update link

//depot/www/live/index.html#4 - opened for edit

Change 12143 created with 1 open file(s).

Submitting change 12143.

Locking 1 files ...

edit //depot/www/live/index.html#5

Change 12143 submitted.

Applying 905ec6a Change page title

//depot/www/live/index.html#5 - opened for edit

Change 12144 created with 1 open file(s).

Submitting change 12144.

Locking 1 files ...

edit //depot/www/live/index.html#6

Change 12144 submitted.

All commits applied!

Performing incremental import into refs/remotes/p4/master git branch

Depot paths: //depot/www/live/

Import destination: refs/remotes/p4/master

Importing revision 12144 (100%)

Rebasing the current branch onto remotes/p4/master

First, rewinding head to replay your work on top of it...

$ git log --oneline --all --graph --decorate

* 775a46f (HEAD, p4/master, p4/HEAD, master) Change page title

* 05f1ade Update link

* 75cd059 Update copyright

* 70eaf78 Initial import of //depot/www/live/ from the state at revision

#head

The result is as though we just did a git push, which is the closest analogy to what actually did
happen.

Note that during this process every Git commit is turned into a Perforce changeset; if you want to
squash them down into a single changeset, you can do that with an interactive rebase before running
git p4 submit. Also note that the SHA-1 hashes of all the commits that were submitted as
changesets have changed; this is because git-p4 adds a line to the end of each commit it converts:

374

$ git log -1

commit 775a46f630d8b46535fc9983cf3ebe6b9aa53145

Author: John Doe <john@example.com>

Date: Sun Aug 31 10:31:44 2014 -0800

 Change page title

 [git-p4: depot-paths = "//depot/www/live/": change = 12144]

What happens if you try to submit a merge commit? Let’s give it a try. Here’s the situation we’ve
gotten ourselves into:

$ git log --oneline --all --graph --decorate

* 3be6fd8 (HEAD, master) Correct email address

* 1dcbf21 Merge remote-tracking branch 'p4/master'

|\

| * c4689fc (p4/master, p4/HEAD) Grammar fix

* | cbacd0a Table borders: yes please

* | b4959b6 Trademark

|/

* 775a46f Change page title

* 05f1ade Update link

* 75cd059 Update copyright

* 70eaf78 Initial import of //depot/www/live/ from the state at revision

#head

The Git and Perforce history diverge after 775a46f. The Git side has two commits, then a merge commit
with the Perforce head, then another commit. We’re going to try to submit these on top of a single
changeset on the Perforce side. Let’s see what would happen if we tried to submit now:

$ git p4 submit -n

Perforce checkout for depot path //depot/www/live/ located at

/Users/ben/john_bens-mbp_8487/john_bens-mbp_8487/depot/www/live/

Would synchronize p4 checkout in /Users/ben/john_bens-

mbp_8487/john_bens-mbp_8487/depot/www/live/

Would apply

 b4959b6 Trademark

 cbacd0a Table borders: yes please

 3be6fd8 Correct email address

The -n flag is short for --dry-run, which tries to report what would happen if the submit command
were run for real. In this case, it looks like we’d be creating three Perforce changesets, which
correspond to the three non-merge commits that don’t yet exist on the Perforce server. That sounds
like exactly what we want, let’s see how it turns out:

375

$ git p4 submit

[…]

$ git log --oneline --all --graph --decorate

* dadbd89 (HEAD, p4/master, p4/HEAD, master) Correct email address

* 1b79a80 Table borders: yes please

* 0097235 Trademark

* c4689fc Grammar fix

* 775a46f Change page title

* 05f1ade Update link

* 75cd059 Update copyright

* 70eaf78 Initial import of //depot/www/live/ from the state at revision

#head

Our history became linear, just as though we had rebased before submitting (which is in fact exactly
what happened). This means you can be free to create, work on, throw away, and merge branches on
the Git side without fear that your history will somehow become incompatible with Perforce. If you can
rebase it, you can contribute it to a Perforce server.

Branching

If your Perforce project has multiple branches, you’re not out of luck; git-p4 can handle that in a way
that makes it feel like Git. Let’s say your Perforce depot is laid out like this:

//depot

 └── project

 ├── main

 └── dev

And let’s say you have a dev branch, which has a view spec that looks like this:

//depot/project/main/... //depot/project/dev/...

Git-p4 can automatically detect that situation and do the right thing:

376

$ git p4 clone --detect-branches //depot/project@all

Importing from //depot/project@all into project

Initialized empty Git repository in /private/tmp/project/.git/

Importing revision 20 (50%)

 Importing new branch project/dev

 Resuming with change 20

Importing revision 22 (100%)

Updated branches: main dev

$ cd project; git log --oneline --all --graph --decorate

* eae77ae (HEAD, p4/master, p4/HEAD, master) main

| * 10d55fb (p4/project/dev) dev

| * a43cfae Populate //depot/project/main/... //depot/project/dev/....

|/

* 2b83451 Project init

Note the “@all” specifier in the depot path; that tells git-p4 to clone not just the latest changeset for
that subtree, but all changesets that have ever touched those paths. This is closer to Git’s concept of
a clone, but if you’re working on a project with a long history, it could take a while.

The --detect-branches flag tells git-p4 to use Perforce’s branch specs to map the branches to Git
refs. If these mappings aren’t present on the Perforce server (which is a perfectly valid way to use
Perforce), you can tell git-p4 what the branch mappings are, and you get the same result:

$ git init project

Initialized empty Git repository in /tmp/project/.git/

$ cd project

$ git config git-p4.branchList main:dev

$ git clone --detect-branches //depot/project@all .

Setting the git-p4.branchList configuration variable to main:dev tells git-p4 that “main” and
“dev” are both branches, and the second one is a child of the first one.

If we now git checkout -b dev p4/project/dev and make some commits, git-p4 is smart
enough to target the right branch when we do git p4 submit. Unfortunately, git-p4 can’t mix
shallow clones and multiple branches; if you have a huge project and want to work on more than one
branch, you’ll have to git p4 clone once for each branch you want to submit to.

For creating or integrating branches, you’ll have to use a Perforce client. Git-p4 can only sync and
submit to existing branches, and it can only do it one linear changeset at a time. If you merge two
branches in Git and try to submit the new changeset, all that will be recorded is a bunch of file
changes; the metadata about which branches are involved in the integration will be lost.

Git and Perforce Summary

Git-p4 makes it possible to use a Git workflow with a Perforce server, and it’s pretty good at it.
However, it’s important to remember that Perforce is in charge of the source, and you’re only using
Git to work locally. Just be really careful about sharing Git commits; if you have a remote that other
people use, don’t push any commits that haven’t already been submitted to the Perforce server.

377

If you want to freely mix the use of Perforce and Git as clients for source control, and you can convince
the server administrator to install it, Git Fusion makes using Git a first-class version-control client for a
Perforce server.

Git and TFS
 Git is becoming popular with Windows developers, and if you’re writing code on Windows,
there’s a good chance you’re using Microsoft’s Team Foundation Server (TFS). TFS is a
collaboration suite that includes defect and work-item tracking, process support for Scrum and others,
code review, and version control. There’s a bit of confusion ahead: TFS is the server, which supports
controlling source code using both Git and their own custom VCS, which they’ve dubbed TFVC (Team
Foundation Version Control). Git support is a somewhat new feature for TFS (shipping with the 2013
version), so all of the tools that predate that refer to the version-control portion as “TFS”, even
though they’re mostly working with TFVC.

If you find yourself on a team that’s using TFVC but you’d rather use Git as your version-control
client, there’s a project for you.

Which Tool

 In fact, there are two: git-tf and git-tfs.

Git-tfs (found at https://github.com/git-tfs/git-tfs) is a .NET project, and (as of this writing) it only runs
on Windows. To work with Git repositories, it uses the .NET bindings for libgit2, a library-oriented
implementation of Git which is highly performant and allows a lot of flexibility with the guts of a Git
repository. Libgit2 is not a complete implementation of Git, so to cover the difference git-tfs will
actually call the command-line Git client for some operations, so there are no artificial limits on what it
can do with Git repositories. Its support of TFVC features is very mature, since it uses the Visual Studio
assemblies for operations with servers. This does mean you’ll need access to those assemblies,
which means you need to install a recent version of Visual Studio (any edition since version 2010,
including Express since version 2012), or the Visual Studio SDK.

Git-tf (whose home is at https://gittf.codeplex.com) is a Java project, and as such runs on any
computer with a Java runtime environment. It interfaces with Git repositories through JGit (a JVM
implementation of Git), which means it has virtually no limitations in terms of Git functions. However,
its support for TFVC is limited as compared to git-tfs – it does not support branches, for instance.

So each tool has pros and cons, and there are plenty of situations that favor one over the other. We’ll
cover the basic usage of both of them in this book.

筆記
You’ll need access to a TFVC-based repository to follow along with these instructions.
These aren’t as plentiful in the wild as Git or Subversion repositories, so you may need
to create one of your own. Codeplex (https://www.codeplex.com) or Visual Studio
Online (http://www.visualstudio.com) are both good choices for this.

Getting Started: git-tf

The first thing you do, just as with any Git project, is clone. Here’s what that looks like with git-tf:

378

https://github.com/git-tfs/git-tfs
https://gittf.codeplex.com
https://www.codeplex.com
http://www.visualstudio.com

$ git tf clone https://tfs.codeplex.com:443/tfs/TFS13 $/myproject/Main

project_git

The first argument is the URL of a TFVC collection, the second is of the form $/project/branch, and
the third is the path to the local Git repository that is to be created (this last one is optional). Git-tf can
only work with one branch at a time; if you want to make checkins on a different TFVC branch, you’ll
have to make a new clone from that branch.

This creates a fully functional Git repository:

$ cd project_git

$ git log --all --oneline --decorate

512e75a (HEAD, tag: TFS_C35190, origin_tfs/tfs, master) Checkin message

This is called a shallow clone, meaning that only the latest changeset has been downloaded. TFVC
isn’t designed for each client to have a full copy of the history, so git-tf defaults to only getting the
latest version, which is much faster.

If you have some time, it’s probably worth it to clone the entire project history, using the --deep
option:

$ git tf clone https://tfs.codeplex.com:443/tfs/TFS13 $/myproject/Main \

 project_git --deep

Username: domain\user

Password:

Connecting to TFS...

Cloning $/myproject into /tmp/project_git: 100%, done.

Cloned 4 changesets. Cloned last changeset 35190 as d44b17a

$ cd project_git

$ git log --all --oneline --decorate

d44b17a (HEAD, tag: TFS_C35190, origin_tfs/tfs, master) Goodbye

126aa7b (tag: TFS_C35189)

8f77431 (tag: TFS_C35178) FIRST

0745a25 (tag: TFS_C35177) Created team project folder $/tfvctest via the

\

 Team Project Creation Wizard

Notice the tags with names like TFS_C35189; this is a feature that helps you know which Git commits
are associated with TFVC changesets. This is a nice way to represent it, since you can see with a simple
log command which of your commits is associated with a snapshot that also exists in TFVC. They
aren’t necessary (and in fact you can turn them off with git config git-tf.tag false) – git-tf
keeps the real commit-changeset mappings in the .git/git-tf file.

Getting Started: git-tfs

Git-tfs cloning behaves a bit differently. Observe:

379

PS> git tfs clone --with-branches \

 https://username.visualstudio.com/DefaultCollection \

 $/project/Trunk project_git

Initialized empty Git repository in C:/Users/ben/project_git/.git/

C15 = b75da1aba1ffb359d00e85c52acb261e4586b0c9

C16 = c403405f4989d73a2c3c119e79021cb2104ce44a

Tfs branches found:

- $/tfvc-test/featureA

The name of the local branch will be : featureA

C17 = d202b53f67bde32171d5078968c644e562f1c439

C18 = 44cd729d8df868a8be20438fdeeefb961958b674

Notice the --with-branches flag. Git-tfs is capable of mapping TFVC branches to Git branches, and
this flag tells it to set up a local Git branch for every TFVC branch. This is highly recommended if
you’ve ever branched or merged in TFS, but it won’t work with a server older than TFS 2010 –
before that release, “branches” were just folders, so git-tfs can’t tell them from regular folders.

Let’s take a look at the resulting Git repository:

PS> git log --oneline --graph --decorate --all

* 44cd729 (tfs/featureA, featureA) Goodbye

* d202b53 Branched from $/tfvc-test/Trunk

* c403405 (HEAD, tfs/default, master) Hello

* b75da1a New project

PS> git log -1

commit c403405f4989d73a2c3c119e79021cb2104ce44a

Author: Ben Straub <ben@straub.cc>

Date: Fri Aug 1 03:41:59 2014 +0000

 Hello

 git-tfs-id:

[https://username.visualstudio.com/DefaultCollection]$/myproject/Trunk;C

16

There are two local branches, master and featureA, which represent the initial starting point of the
clone (Trunk in TFVC) and a child branch (featureA in TFVC). You can also see that the tfs
“remote” has a couple of refs too: default and featureA, which represent TFVC branches. Git-tfs
maps the branch you cloned from to tfs/default, and others get their own names.

Another thing to notice is the git-tfs-id: lines in the commit messages. Instead of tags, git-tfs uses
these markers to relate TFVC changesets to Git commits. This has the implication that your Git
commits will have a different SHA-1 hash before and after they have been pushed to TFVC.

Git-tf[s] Workflow

380

筆記

Regardless of which tool you’re using, you should set a couple of Git configuration
values to avoid running into issues.

$ git config set --local core.ignorecase=true

$ git config set --local core.autocrlf=false

The obvious next thing you’re going to want to do is work on the project. TFVC and TFS have several
features that may add complexity to your workflow:

1. Feature branches that aren’t represented in TFVC add a bit of complexity. This has to do with the
very different ways that TFVC and Git represent branches.

2. Be aware that TFVC allows users to “checkout” files from the server, locking them so nobody
else can edit them. This obviously won’t stop you from editing them in your local repository, but
it could get in the way when it comes time to push your changes up to the TFVC server.

3. TFS has the concept of “gated” checkins, where a TFS build-test cycle has to complete
successfully before the checkin is allowed. This uses the “shelve” function in TFVC, which we
don’t cover in detail here. You can fake this in a manual fashion with git-tf, and git-tfs provides
the checkintool command which is gate-aware.

In the interest of brevity, what we’ll cover here is the happy path, which sidesteps or avoids most of
these issues.

Workflow: git-tf

Let’s say you’ve done some work, made a couple of Git commits on master, and you’re ready to
share your progress on the TFVC server. Here’s our Git repository:

$ git log --oneline --graph --decorate --all

* 4178a82 (HEAD, master) update code

* 9df2ae3 update readme

* d44b17a (tag: TFS_C35190, origin_tfs/tfs) Goodbye

* 126aa7b (tag: TFS_C35189)

* 8f77431 (tag: TFS_C35178) FIRST

* 0745a25 (tag: TFS_C35177) Created team project folder $/tfvctest via

the \

 Team Project Creation Wizard

We want to take the snapshot that’s in the 4178a82 commit and push it up to the TFVC server. First
things first: let’s see if any of our teammates did anything since we last connected:

381

$ git tf fetch

Username: domain\user

Password:

Connecting to TFS...

Fetching $/myproject at latest changeset: 100%, done.

Downloaded changeset 35320 as commit 8ef06a8. Updated FETCH_HEAD.

$ git log --oneline --graph --decorate --all

* 8ef06a8 (tag: TFS_C35320, origin_tfs/tfs) just some text

| * 4178a82 (HEAD, master) update code

| * 9df2ae3 update readme

|/

* d44b17a (tag: TFS_C35190) Goodbye

* 126aa7b (tag: TFS_C35189)

* 8f77431 (tag: TFS_C35178) FIRST

* 0745a25 (tag: TFS_C35177) Created team project folder $/tfvctest via

the \

 Team Project Creation Wizard

Looks like someone else is working, too, and now we have divergent history. This is where Git shines,
but we have two choices of how to proceed:

1. Making a merge commit feels natural as a Git user (after all, that’s what git pull does), and
git-tf can do this for you with a simple git tf pull. Be aware, however, that TFVC doesn’t
think this way, and if you push merge commits your history will start to look different on both
sides, which can be confusing. However, if you plan on submitting all of your changes as one
changeset, this is probably the easiest choice.

2. Rebasing makes our commit history linear, which means we have the option of converting each of
our Git commits into a TFVC changeset. Since this leaves the most options open, we recommend
you do it this way; git-tf even makes it easy for you with git tf pull --rebase.

The choice is yours. For this example, we’ll be rebasing:

$ git rebase FETCH_HEAD

First, rewinding head to replay your work on top of it...

Applying: update readme

Applying: update code

$ git log --oneline --graph --decorate --all

* 5a0e25e (HEAD, master) update code

* 6eb3eb5 update readme

* 8ef06a8 (tag: TFS_C35320, origin_tfs/tfs) just some text

* d44b17a (tag: TFS_C35190) Goodbye

* 126aa7b (tag: TFS_C35189)

* 8f77431 (tag: TFS_C35178) FIRST

* 0745a25 (tag: TFS_C35177) Created team project folder $/tfvctest via

the \

 Team Project Creation Wizard

Now we’re ready to make a checkin to the TFVC server. Git-tf gives you the choice of making a single
changeset that represents all the changes since the last one (--shallow, which is the default) and

382

creating a new changeset for each Git commit (--deep). For this example, we’ll just create one
changeset:

$ git tf checkin -m 'Updating readme and code'

Username: domain\user

Password:

Connecting to TFS...

Checking in to $/myproject: 100%, done.

Checked commit 5a0e25e in as changeset 35348

$ git log --oneline --graph --decorate --all

* 5a0e25e (HEAD, tag: TFS_C35348, origin_tfs/tfs, master) update code

* 6eb3eb5 update readme

* 8ef06a8 (tag: TFS_C35320) just some text

* d44b17a (tag: TFS_C35190) Goodbye

* 126aa7b (tag: TFS_C35189)

* 8f77431 (tag: TFS_C35178) FIRST

* 0745a25 (tag: TFS_C35177) Created team project folder $/tfvctest via

the \

 Team Project Creation Wizard

There’s a new TFS_C35348 tag, indicating that TFVC is storing the exact same snapshot as the
5a0e25e commit. It’s important to note that not every Git commit needs to have an exact
counterpart in TFVC; the 6eb3eb5 commit, for example, doesn’t exist anywhere on the server.

That’s the main workflow. There are a couple of other considerations you’ll want to keep in mind:

• There is no branching. Git-tf can only create Git repositories from one TFVC branch at a time.
• Collaborate using either TFVC or Git, but not both. Different git-tf clones of the same TFVC

repository may have different commit SHA-1 hashes, which will cause no end of headaches.
• If your team’s workflow includes collaborating in Git and syncing periodically with TFVC, only

connect to TFVC with one of the Git repositories.

Workflow: git-tfs

Let’s walk through the same scenario using git-tfs. Here are the new commits we’ve made to the
master branch in our Git repository:

PS> git log --oneline --graph --all --decorate

* c3bd3ae (HEAD, master) update code

* d85e5a2 update readme

| * 44cd729 (tfs/featureA, featureA) Goodbye

| * d202b53 Branched from $/tfvc-test/Trunk

|/

* c403405 (tfs/default) Hello

* b75da1a New project

Now let’s see if anyone else has done work while we were hacking away:

383

PS> git tfs fetch

C19 = aea74a0313de0a391940c999e51c5c15c381d91d

PS> git log --all --oneline --graph --decorate

* aea74a0 (tfs/default) update documentation

| * c3bd3ae (HEAD, master) update code

| * d85e5a2 update readme

|/

| * 44cd729 (tfs/featureA, featureA) Goodbye

| * d202b53 Branched from $/tfvc-test/Trunk

|/

* c403405 Hello

* b75da1a New project

Yes, it turns out our coworker has added a new TFVC changeset, which shows up as the new aea74a0
commit, and the tfs/default remote branch has moved.

As with git-tf, we have two fundamental options for how to resolve this divergent history:

1. Rebase to preserve a linear history.
2. Merge to preserve what actually happened.

In this case, we’re going to do a “deep” checkin, where every Git commit becomes a TFVC
changeset, so we want to rebase.

PS> git rebase tfs/default

First, rewinding head to replay your work on top of it...

Applying: update readme

Applying: update code

PS> git log --all --oneline --graph --decorate

* 10a75ac (HEAD, master) update code

* 5cec4ab update readme

* aea74a0 (tfs/default) update documentation

| * 44cd729 (tfs/featureA, featureA) Goodbye

| * d202b53 Branched from $/tfvc-test/Trunk

|/

* c403405 Hello

* b75da1a New project

Now we’re ready to complete our contribution by checking in our code to the TFVC server. We’ll use
the rcheckin command here to create a TFVC changeset for each Git commit in the path from HEAD
to the first tfs remote branch found (the checkin command would only create one changeset, sort of
like squashing Git commits).

384

PS> git tfs rcheckin

Working with tfs remote: default

Fetching changes from TFS to minimize possibility of late conflict...

Starting checkin of 5cec4ab4 'update readme'

 add README.md

C20 = 71a5ddce274c19f8fdc322b4f165d93d89121017

Done with 5cec4ab4b213c354341f66c80cd650ab98dcf1ed, rebasing tail onto

new TFS-commit...

Rebase done successfully.

Starting checkin of b1bf0f99 'update code'

 edit

.git\tfs\default\workspace\ConsoleApplication1/ConsoleApplication1/Progr

am.cs

C21 = ff04e7c35dfbe6a8f94e782bf5e0031cee8d103b

Done with b1bf0f9977b2d48bad611ed4a03d3738df05ea5d, rebasing tail onto

new TFS-commit...

Rebase done successfully.

No more to rcheckin.

PS> git log --all --oneline --graph --decorate

* ff04e7c (HEAD, tfs/default, master) update code

* 71a5ddc update readme

* aea74a0 update documentation

| * 44cd729 (tfs/featureA, featureA) Goodbye

| * d202b53 Branched from $/tfvc-test/Trunk

|/

* c403405 Hello

* b75da1a New project

Notice how after every successful checkin to the TFVC server, git-tfs is rebasing the remaining work
onto what it just did. That’s because it’s adding the git-tfs-id field to the bottom of the commit
messages, which changes the SHA-1 hashes. This is exactly as designed, and there’s nothing to worry
about, but you should be aware that it’s happening, especially if you’re sharing Git commits with
others.

TFS has many features that integrate with its version control system, such as work items, designated
reviewers, gated checkins, and so on. It can be cumbersome to work with these features using only a
command-line tool, but fortunately git-tfs lets you launch a graphical checkin tool very easily:

PS> git tfs checkintool

PS> git tfs ct

It looks a bit like this:

385

圖表 147. The git-tfs checkin tool.

This will look familiar to TFS users, as it’s the same dialog that’s launched from within Visual
Studio.

Git-tfs also lets you control TFVC branches from your Git repository. As an example, let’s create one:

PS> git tfs branch $/tfvc-test/featureBee

The name of the local branch will be : featureBee

C26 = 1d54865c397608c004a2cadce7296f5edc22a7e5

PS> git log --oneline --graph --decorate --all

* 1d54865 (tfs/featureBee) Creation branch $/myproject/featureBee

* ff04e7c (HEAD, tfs/default, master) update code

* 71a5ddc update readme

* aea74a0 update documentation

| * 44cd729 (tfs/featureA, featureA) Goodbye

| * d202b53 Branched from $/tfvc-test/Trunk

|/

* c403405 Hello

* b75da1a New project

Creating a branch in TFVC means adding a changeset where that branch now exists, and this is
projected as a Git commit. Note also that git-tfs created the tfs/featureBee remote branch, but
HEAD is still pointing to master. If you want to work on the newly-minted branch, you’ll want to base
your new commits on the 1d54865 commit, perhaps by creating a topic branch from that commit.

Git and TFS Summary

Git-tf and Git-tfs are both great tools for interfacing with a TFVC server. They allow you to use the
power of Git locally, avoid constantly having to round-trip to the central TFVC server, and make your
life as a developer much easier, without forcing your entire team to migrate to Git. If you’re working

386

on Windows (which is likely if your team is using TFS), you’ll probably want to use git-tfs, since its
feature set is more complete, but if you’re working on another platform, you’ll be using git-tf, which
is more limited. As with most of the tools in this chapter, you should choose one of these version-
control systems to be canonical, and use the other one in a subordinate fashion – either Git or TFVC
should be the center of collaboration, but not both.

Migrating to Git
 If you have an existing codebase in another VCS but you’ve decided to start using Git, you must
migrate your project one way or another. This section goes over some importers for common systems,
and then demonstrates how to develop your own custom importer. You’ll learn how to import data
from several of the bigger professionally used SCM systems, because they make up the majority of
users who are switching, and because high-quality tools for them are easy to come by.

Subversion
 If you read the previous section about using git svn, you can easily use those instructions to git
svn clone a repository; then, stop using the Subversion server, push to a new Git server, and start
using that. If you want the history, you can accomplish that as quickly as you can pull the data out of
the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well do it right. The
first problem is the author information. In Subversion, each person committing has a user on the
system who is recorded in the commit information. The examples in the previous section show
schacon in some places, such as the blame output and the git svn log. If you want to map this to
better Git author data, you need a mapping from the Subversion users to the Git authors. Create a file
called users.txt that has this mapping in a format like this:

schacon = Scott Chacon <schacon@geemail.com>

selse = Someo Nelse <selse@geemail.com>

To get a list of the author names that SVN uses, you can run this:

$ svn log --xml | grep author | sort -u | \

 perl -pe 's/.*>(.*?)<.*/$1 = /'

That generates the log output in XML format, then keeps only the lines with author information,
discards duplicates, strips out the XML tags. (Obviously this only works on a machine with grep, sort,
and perl installed.) Then, redirect that output into your users.txt file so you can add the equivalent
Git user data next to each entry.

You can provide this file to git svn to help it map the author data more accurately. You can also tell
git svn not to include the metadata that Subversion normally imports, by passing --no-metadata
to the clone or init command (though if you want to keep the synchronisation-metadata, feel free to
omit this parameter). This makes your import command look like this:

387

$ git svn clone http://my-project.googlecode.com/svn/ \

 --authors-file=users.txt --no-metadata -s my_project

Now you should have a nicer Subversion import in your my_project directory. Instead of commits
that look like this

commit 37efa680e8473b615de980fa935944215428a35a

Author: schacon <schacon@4c93b258-373f-11de-be05-5f7a86268029>

Date: Sun May 3 00:12:22 2009 +0000

 fixed install - go to trunk

 git-svn-id: https://my-project.googlecode.com/svn/trunk@94 4c93b258-

373f-11de-

 be05-5f7a86268029

they look like this:

commit 03a8785f44c8ea5cdb0e8834b7c8e6c469be2ff2

Author: Scott Chacon <schacon@geemail.com>

Date: Sun May 3 00:12:22 2009 +0000

 fixed install - go to trunk

Not only does the Author field look a lot better, but the git-svn-id is no longer there, either.

You should also do a bit of post-import cleanup. For one thing, you should clean up the weird
references that git svn set up. First you’ll move the tags so they’re actual tags rather than strange
remote branches, and then you’ll move the rest of the branches so they’re local.

To move the tags to be proper Git tags, run:

$ cp -Rf .git/refs/remotes/origin/tags/* .git/refs/tags/

$ rm -Rf .git/refs/remotes/origin/tags

This takes the references that were remote branches that started with remotes/origin/tags/ and
makes them real (lightweight) tags.

Next, move the rest of the references under refs/remotes to be local branches:

$ cp -Rf .git/refs/remotes/origin/* .git/refs/heads/

$ rm -Rf .git/refs/remotes/origin

It may happen that you’ll see some extra branches which are suffixed by @xxx (where xxx is a
number), while in Subversion you only see one branch. This is actually a Subversion feature called

388

"peg-revisions", which is something that Git simply has no syntactical counterpart for. Hence, git svn
simply adds the svn version number to the branch name just in the same way as you would have
written it in svn to address the peg-revision of that branch. If you do not care anymore about the peg-
revisions, simply remove them using git branch -d.

Now all the old branches are real Git branches and all the old tags are real Git tags.

There’s one last thing to clean up. Unfortunately, git svn creates an extra branch named trunk,
which maps to Subversion’s default branch, but the trunk ref points to the same place as master.
Since master is more idiomatically Git, here’s how to remove the extra branch:

$ git branch -d trunk

The last thing to do is add your new Git server as a remote and push to it. Here is an example of adding
your server as a remote:

$ git remote add origin git@my-git-server:myrepository.git

Because you want all your branches and tags to go up, you can now run this:

$ git push origin --all

$ git push origin --tags

All your branches and tags should be on your new Git server in a nice, clean import.

Mercurial
 Since Mercurial and Git have fairly similar models for representing versions, and since Git is a bit

more flexible, converting a repository from Mercurial to Git is fairly straightforward, using a tool called
"hg-fast-export", which you’ll need a copy of:

$ git clone http://repo.or.cz/r/fast-export.git /tmp/fast-export

The first step in the conversion is to get a full clone of the Mercurial repository you want to convert:

$ hg clone <remote repo URL> /tmp/hg-repo

The next step is to create an author mapping file. Mercurial is a bit more forgiving than Git for what it
will put in the author field for changesets, so this is a good time to clean house. Generating this is a
one-line command in a bash shell:

$ cd /tmp/hg-repo

$ hg log | grep user: | sort | uniq | sed 's/user: *//' > ../authors

389

This will take a few seconds, depending on how long your project’s history is, and afterwards the
/tmp/authors file will look something like this:

bob

bob@localhost

bob <bob@company.com>

bob jones <bob <AT> company <DOT> com>

Bob Jones <bob@company.com>

Joe Smith <joe@company.com>

In this example, the same person (Bob) has created changesets under four different names, one of
which actually looks correct, and one of which would be completely invalid for a Git commit. Hg-fast-
export lets us fix this by adding ={new name and email address} at the end of every line we want
to change, and removing the lines for any usernames that we want to leave alone. If all the usernames
look fine, we won’t need this file at all. In this example, we want our file to look like this:

bob=Bob Jones <bob@company.com>

bob@localhost=Bob Jones <bob@company.com>

bob <bob@company.com>=Bob Jones <bob@company.com>

bob jones <bob <AT> company <DOT> com>=Bob Jones <bob@company.com>

The next step is to create our new Git repository, and run the export script:

$ git init /tmp/converted

$ cd /tmp/converted

$ /tmp/fast-export/hg-fast-export.sh -r /tmp/hg-repo -A /tmp/authors

The -r flag tells hg-fast-export where to find the Mercurial repository we want to convert, and the -A
flag tells it where to find the author-mapping file. The script parses Mercurial changesets and converts
them into a script for Git’s "fast-import" feature (which we’ll discuss in detail a bit later on). This
takes a bit (though it’s much faster than it would be over the network), and the output is fairly
verbose:

390

$ /tmp/fast-export/hg-fast-export.sh -r /tmp/hg-repo -A /tmp/authors

Loaded 4 authors

master: Exporting full revision 1/22208 with 13/0/0

added/changed/removed files

master: Exporting simple delta revision 2/22208 with 1/1/0

added/changed/removed files

master: Exporting simple delta revision 3/22208 with 0/1/0

added/changed/removed files

[…]

master: Exporting simple delta revision 22206/22208 with 0/4/0

added/changed/removed files

master: Exporting simple delta revision 22207/22208 with 0/2/0

added/changed/removed files

master: Exporting thorough delta revision 22208/22208 with 3/213/0

added/changed/removed files

Exporting tag [0.4c] at [hg r9] [git :10]

Exporting tag [0.4d] at [hg r16] [git :17]

[…]

Exporting tag [3.1-rc] at [hg r21926] [git :21927]

Exporting tag [3.1] at [hg r21973] [git :21974]

Issued 22315 commands

git-fast-import statistics:

Alloc'd objects: 120000

Total objects: 115032 (208171 duplicates)

 blobs : 40504 (205320 duplicates 26117 deltas of

39602 attempts)

 trees : 52320 (2851 duplicates 47467 deltas of

47599 attempts)

 commits: 22208 (0 duplicates 0 deltas of

0 attempts)

 tags : 0 (0 duplicates 0 deltas of

0 attempts)

Total branches: 109 (2 loads)

 marks: 1048576 (22208 unique)

 atoms: 1952

Memory total: 7860 KiB

 pools: 2235 KiB

 objects: 5625 KiB

pack_report: getpagesize() = 4096

pack_report: core.packedGitWindowSize = 1073741824

pack_report: core.packedGitLimit = 8589934592

pack_report: pack_used_ctr = 90430

pack_report: pack_mmap_calls = 46771

pack_report: pack_open_windows = 1 / 1

pack_report: pack_mapped = 340852700 / 340852700

$ git shortlog -sn

 369 Bob Jones

 365 Joe Smith

391

That’s pretty much all there is to it. All of the Mercurial tags have been converted to Git tags, and
Mercurial branches and bookmarks have been converted to Git branches. Now you’re ready to push
the repository up to its new server-side home:

$ git remote add origin git@my-git-server:myrepository.git

$ git push origin --all

Perforce
 The next system you’ll look at importing from is Perforce. As we discussed above, there are two

ways to let Git and Perforce talk to each other: git-p4 and Perforce Git Fusion.

Perforce Git Fusion

Git Fusion makes this process fairly painless. Just configure your project settings, user mappings, and
branches using a configuration file (as discussed in Git Fusion), and clone the repository. Git Fusion
leaves you with what looks like a native Git repository, which is then ready to push to a native Git host
if you desire. You could even use Perforce as your Git host if you like.

Git-p4

Git-p4 can also act as an import tool. As an example, we’ll import the Jam project from the Perforce
Public Depot. To set up your client, you must export the P4PORT environment variable to point to the
Perforce depot:

$ export P4PORT=public.perforce.com:1666

筆記
In order to follow along, you’ll need a Perforce depot to connect with. We’ll be using
the public depot at public.perforce.com for our examples, but you can use any depot
you have access to.

 Run the git p4 clone command to import the Jam project from the Perforce server, supplying the
depot and project path and the path into which you want to import the project:

$ git-p4 clone //guest/perforce_software/jam@all p4import

Importing from //guest/perforce_software/jam@all into p4import

Initialized empty Git repository in /private/tmp/p4import/.git/

Import destination: refs/remotes/p4/master

Importing revision 9957 (100%)

This particular project has only one branch, but if you have branches that are configured with branch
views (or just a set of directories), you can use the --detect-branches flag to git p4 clone to
import all the project’s branches as well. See Branching for a bit more detail on this.

At this point you’re almost done. If you go to the p4import directory and run git log, you can see
your imported work:

392

$ git log -2

commit e5da1c909e5db3036475419f6379f2c73710c4e6

Author: giles <giles@giles@perforce.com>

Date: Wed Feb 8 03:13:27 2012 -0800

 Correction to line 355; change to .

 [git-p4: depot-paths = "//public/jam/src/": change = 8068]

commit aa21359a0a135dda85c50a7f7cf249e4f7b8fd98

Author: kwirth <kwirth@perforce.com>

Date: Tue Jul 7 01:35:51 2009 -0800

 Fix spelling error on Jam doc page (cummulative -> cumulative).

 [git-p4: depot-paths = "//public/jam/src/": change = 7304]

You can see that git-p4 has left an identifier in each commit message. It’s fine to keep that identifier
there, in case you need to reference the Perforce change number later. However, if you’d like to
remove the identifier, now is the time to do so – before you start doing work on the new repository.
You can use git filter-branch to remove the identifier strings en masse:

$ git filter-branch --msg-filter 'sed -e "/^\[git-p4:/d"'

Rewrite e5da1c909e5db3036475419f6379f2c73710c4e6 (125/125)

Ref 'refs/heads/master' was rewritten

If you run git log, you can see that all the SHA-1 checksums for the commits have changed, but the
git-p4 strings are no longer in the commit messages:

$ git log -2

commit b17341801ed838d97f7800a54a6f9b95750839b7

Author: giles <giles@giles@perforce.com>

Date: Wed Feb 8 03:13:27 2012 -0800

 Correction to line 355; change to .

commit 3e68c2e26cd89cb983eb52c024ecdfba1d6b3fff

Author: kwirth <kwirth@perforce.com>

Date: Tue Jul 7 01:35:51 2009 -0800

 Fix spelling error on Jam doc page (cummulative -> cumulative).

Your import is ready to push up to your new Git server.

TFS
 If your team is converting their source control from TFVC to Git, you’ll want the highest-fidelity

conversion you can get. This means that, while we covered both git-tfs and git-tf for the interop

393

section, we’ll only be covering git-tfs for this part, because git-tfs supports branches, and this is
prohibitively difficult using git-tf.

筆記 This is a one-way conversion. The resulting Git repository won’t be able to connect
with the original TFVC project.

The first thing to do is map usernames. TFVC is fairly liberal with what goes into the author field for
changesets, but Git wants a human-readable name and email address. You can get this information
from the tf command-line client, like so:

PS> tf history $/myproject -recursive > AUTHORS_TMP

This grabs all of the changesets in the history of the project and put it in the AUTHORS_TMP file that
we will process to extract the data of the User column (the 2nd one). Open the file and find at which
characters start and end the column and replace, in the following command-line, the parameters 11-
20 of the cut command with the ones found:

PS> cat AUTHORS_TMP | cut -b 11-20 | tail -n+3 | sort | uniq > AUTHORS

The cut command keeps only the characters between 11 and 20 from each line. The tail command
skips the first two lines, which are field headers and ASCII-art underlines. The result of all of this is
piped to sort and uniq to eliminate duplicates, and saved to a file named AUTHORS. The next step is
manual; in order for git-tfs to make effective use of this file, each line must be in this format:

DOMAIN\username = User Name <email@address.com>

The portion on the left is the “User” field from TFVC, and the portion on the right side of the equals
sign is the user name that will be used for Git commits.

Once you have this file, the next thing to do is make a full clone of the TFVC project you’re interested
in:

PS> git tfs clone --with-branches --authors=AUTHORS

https://username.visualstudio.com/DefaultCollection $/project/Trunk

project_git

Next you’ll want to clean the git-tfs-id sections from the bottom of the commit messages. The
following command will do that:

PS> git filter-branch -f --msg-filter 'sed "s/^git-tfs-id:.*$//g"' '--'

--all

That uses the sed command from the Git-bash environment to replace any line starting with “git-tfs-
id:” with emptiness, which Git will then ignore.

394

Once that’s all done, you’re ready to add a new remote, push all your branches up, and have your
team start working from Git.

A Custom Importer
 If your system isn’t one of the above, you should look for an importer online – quality importers are
available for many other systems, including CVS, Clear Case, Visual Source Safe, even a directory of
archives. If none of these tools works for you, you have a more obscure tool, or you otherwise need a
more custom importing process, you should use git fast-import. This command reads simple
instructions from stdin to write specific Git data. It’s much easier to create Git objects this way than
to run the raw Git commands or try to write the raw objects (see Git Internals for more information).
This way, you can write an import script that reads the necessary information out of the system
you’re importing from and prints straightforward instructions to stdout. You can then run this
program and pipe its output through git fast-import.

To quickly demonstrate, you’ll write a simple importer. Suppose you work in current, you back up
your project by occasionally copying the directory into a time-stamped back_YYYY_MM_DD backup
directory, and you want to import this into Git. Your directory structure looks like this:

$ ls /opt/import_from

back_2014_01_02

back_2014_01_04

back_2014_01_14

back_2014_02_03

current

In order to import a Git directory, you need to review how Git stores its data. As you may remember,
Git is fundamentally a linked list of commit objects that point to a snapshot of content. All you have to
do is tell fast-import what the content snapshots are, what commit data points to them, and the
order they go in. Your strategy will be to go through the snapshots one at a time and create commits
with the contents of each directory, linking each commit back to the previous one.

As we did in An Example Git-Enforced Policy, we’ll write this in Ruby, because it’s what we generally
work with and it tends to be easy to read. You can write this example pretty easily in anything you’re
familiar with – it just needs to print the appropriate information to stdout. And, if you are running on
Windows, this means you’ll need to take special care to not introduce carriage returns at the end
your lines – git fast-import is very particular about just wanting line feeds (LF) not the carriage return
line feeds (CRLF) that Windows uses.

To begin, you’ll change into the target directory and identify every subdirectory, each of which is a
snapshot that you want to import as a commit. You’ll change into each subdirectory and print the
commands necessary to export it. Your basic main loop looks like this:

395

last_mark = nil

loop through the directories

Dir.chdir(ARGV[0]) do

 Dir.glob("*").each do |dir|

 next if File.file?(dir)

 # move into the target directory

 Dir.chdir(dir) do

 last_mark = print_export(dir, last_mark)

 end

 end

end

You run print_export inside each directory, which takes the manifest and mark of the previous
snapshot and returns the manifest and mark of this one; that way, you can link them properly.
“Mark” is the fast-import term for an identifier you give to a commit; as you create commits, you
give each one a mark that you can use to link to it from other commits. So, the first thing to do in your
print_export method is generate a mark from the directory name:

mark = convert_dir_to_mark(dir)

You’ll do this by creating an array of directories and using the index value as the mark, because a
mark must be an integer. Your method looks like this:

$marks = []

def convert_dir_to_mark(dir)

 if !$marks.include?(dir)

 $marks << dir

 end

 ($marks.index(dir) + 1).to_s

end

Now that you have an integer representation of your commit, you need a date for the commit
metadata. Because the date is expressed in the name of the directory, you’ll parse it out. The next
line in your print_export file is:

date = convert_dir_to_date(dir)

where convert_dir_to_date is defined as:

396

def convert_dir_to_date(dir)

 if dir == 'current'

 return Time.now().to_i

 else

 dir = dir.gsub('back_', '')

 (year, month, day) = dir.split('_')

 return Time.local(year, month, day).to_i

 end

end

That returns an integer value for the date of each directory. The last piece of meta-information you
need for each commit is the committer data, which you hardcode in a global variable:

$author = 'John Doe <john@example.com>'

Now you’re ready to begin printing out the commit data for your importer. The initial information
states that you’re defining a commit object and what branch it’s on, followed by the mark you’ve
generated, the committer information and commit message, and then the previous commit, if any.
The code looks like this:

print the import information

puts 'commit refs/heads/master'

puts 'mark :' + mark

puts "committer #{$author} #{date} -0700"

export_data('imported from ' + dir)

puts 'from :' + last_mark if last_mark

You hardcode the time zone (-0700) because doing so is easy. If you’re importing from another
system, you must specify the time zone as an offset. The commit message must be expressed in a
special format:

data (size)\n(contents)

The format consists of the word data, the size of the data to be read, a newline, and finally the data.
Because you need to use the same format to specify the file contents later, you create a helper
method, export_data:

def export_data(string)

 print "data #{string.size}\n#{string}"

end

All that’s left is to specify the file contents for each snapshot. This is easy, because you have each one
in a directory – you can print out the deleteall command followed by the contents of each file in the
directory. Git will then record each snapshot appropriately:

397

puts 'deleteall'

Dir.glob("**/*").each do |file|

 next if !File.file?(file)

 inline_data(file)

end

Note: Because many systems think of their revisions as changes from one commit to another, fast-
import can also take commands with each commit to specify which files have been added, removed,
or modified and what the new contents are. You could calculate the differences between snapshots
and provide only this data, but doing so is more complex – you may as well give Git all the data and let
it figure it out. If this is better suited to your data, check the fast-import man page for details about
how to provide your data in this manner.

The format for listing the new file contents or specifying a modified file with the new contents is as
follows:

M 644 inline path/to/file

data (size)

(file contents)

Here, 644 is the mode (if you have executable files, you need to detect and specify 755 instead), and
inline says you’ll list the contents immediately after this line. Your inline_data method looks like
this:

def inline_data(file, code = 'M', mode = '644')

 content = File.read(file)

 puts "#{code} #{mode} inline #{file}"

 export_data(content)

end

You reuse the export_data method you defined earlier, because it’s the same as the way you
specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the next iteration:

return mark

筆記

If you are running on Windows you’ll need to make sure that you add one extra step. As
mentioned before, Windows uses CRLF for new line characters while git fast-import
expects only LF. To get around this problem and make git fast-import happy, you need to
tell ruby to use LF instead of CRLF:

$stdout.binmode

That’s it. Here’s the script in its entirety:

398

#!/usr/bin/env ruby

$stdout.binmode

$author = "John Doe <john@example.com>"

$marks = []

def convert_dir_to_mark(dir)

 if !$marks.include?(dir)

 $marks << dir

 end

 ($marks.index(dir)+1).to_s

end

def convert_dir_to_date(dir)

 if dir == 'current'

 return Time.now().to_i

 else

 dir = dir.gsub('back_', '')

 (year, month, day) = dir.split('_')

 return Time.local(year, month, day).to_i

 end

end

def export_data(string)

 print "data #{string.size}\n#{string}"

end

def inline_data(file, code='M', mode='644')

 content = File.read(file)

 puts "#{code} #{mode} inline #{file}"

 export_data(content)

end

def print_export(dir, last_mark)

 date = convert_dir_to_date(dir)

 mark = convert_dir_to_mark(dir)

 puts 'commit refs/heads/master'

 puts "mark :#{mark}"

 puts "committer #{$author} #{date} -0700"

 export_data("imported from #{dir}")

 puts "from :#{last_mark}" if last_mark

 puts 'deleteall'

 Dir.glob("**/*").each do |file|

 next if !File.file?(file)

 inline_data(file)

 end

 mark

end

Loop through the directories

399

last_mark = nil

Dir.chdir(ARGV[0]) do

 Dir.glob("*").each do |dir|

 next if File.file?(dir)

 # move into the target directory

 Dir.chdir(dir) do

 last_mark = print_export(dir, last_mark)

 end

 end

end

If you run this script, you’ll get content that looks something like this:

$ ruby import.rb /opt/import_from

commit refs/heads/master

mark :1

committer John Doe <john@example.com> 1388649600 -0700

data 29

imported from back_2014_01_02deleteall

M 644 inline README.md

data 28

Hello

This is my readme.

commit refs/heads/master

mark :2

committer John Doe <john@example.com> 1388822400 -0700

data 29

imported from back_2014_01_04from :1

deleteall

M 644 inline main.rb

data 34

#!/bin/env ruby

puts "Hey there"

M 644 inline README.md

(...)

To run the importer, pipe this output through git fast-import while in the Git directory you want to
import into. You can create a new directory and then run git init in it for a starting point, and then
run your script:

400

$ git init

Initialized empty Git repository in /opt/import_to/.git/

$ ruby import.rb /opt/import_from | git fast-import

git-fast-import statistics:

Alloc'd objects: 5000

Total objects: 13 (6 duplicates)

 blobs : 5 (4 duplicates 3 deltas of

5 attempts)

 trees : 4 (1 duplicates 0 deltas of

4 attempts)

 commits: 4 (1 duplicates 0 deltas of

0 attempts)

 tags : 0 (0 duplicates 0 deltas of

0 attempts)

Total branches: 1 (1 loads)

 marks: 1024 (5 unique)

 atoms: 2

Memory total: 2344 KiB

 pools: 2110 KiB

 objects: 234 KiB

pack_report: getpagesize() = 4096

pack_report: core.packedGitWindowSize = 1073741824

pack_report: core.packedGitLimit = 8589934592

pack_report: pack_used_ctr = 10

pack_report: pack_mmap_calls = 5

pack_report: pack_open_windows = 2 / 2

pack_report: pack_mapped = 1457 / 1457

As you can see, when it completes successfully, it gives you a bunch of statistics about what it
accomplished. In this case, you imported 13 objects total for 4 commits into 1 branch. Now, you can
run git log to see your new history:

$ git log -2

commit 3caa046d4aac682a55867132ccdfbe0d3fdee498

Author: John Doe <john@example.com>

Date: Tue Jul 29 19:39:04 2014 -0700

 imported from current

commit 4afc2b945d0d3c8cd00556fbe2e8224569dc9def

Author: John Doe <john@example.com>

Date: Mon Feb 3 01:00:00 2014 -0700

 imported from back_2014_02_03

There you go – a nice, clean Git repository. It’s important to note that nothing is checked out – you
don’t have any files in your working directory at first. To get them, you must reset your branch to

401

where master is now:

$ ls

$ git reset --hard master

HEAD is now at 3caa046 imported from current

$ ls

README.md main.rb

You can do a lot more with the fast-import tool – handle different modes, binary data, multiple
branches and merging, tags, progress indicators, and more. A number of examples of more complex
scenarios are available in the contrib/fast-import directory of the Git source code.

Summary
You should feel comfortable using Git as a client for other version-control systems, or importing nearly
any existing repository into Git without losing data. In the next chapter, we’ll cover the raw internals
of Git so you can craft every single byte, if need be.

402

Git Internals
You may have skipped to this chapter from a previous chapter, or you may have gotten here after
reading the rest of the book – in either case, this is where we’ll go over the inner workings and
implementation of Git. We found that learning this information was fundamentally important to
understanding how useful and powerful Git is, but others have argued to us that it can be confusing
and unnecessarily complex for beginners. Thus, we’ve made this discussion the last chapter in the
book so you could read it early or later in your learning process. We leave it up to you to decide.

Now that you’re here, let’s get started. First, if it isn’t yet clear, Git is fundamentally a content-
addressable filesystem with a VCS user interface written on top of it. You’ll learn more about what
this means in a bit.

In the early days of Git (mostly pre 1.5), the user interface was much more complex because it
emphasized this filesystem rather than a polished VCS. In the last few years, the UI has been refined
until it’s as clean and easy to use as any system out there; but often, the stereotype lingers about the
early Git UI that was complex and difficult to learn.

The content-addressable filesystem layer is amazingly cool, so we’ll cover that first in this chapter;
then, you’ll learn about the transport mechanisms and the repository maintenance tasks that you
may eventually have to deal with.

Plumbing and Porcelain
This book covers how to use Git with 30 or so verbs such as checkout, branch, remote, and so on.
But because Git was initially a toolkit for a VCS rather than a full user-friendly VCS, it has a bunch of
verbs that do low-level work and were designed to be chained together UNIX style or called from
scripts. These commands are generally referred to as “plumbing” commands, and the more user-
friendly commands are called “porcelain” commands.

The book’s first nine chapters deal almost exclusively with porcelain commands. But in this chapter,
you’ll be dealing mostly with the lower-level plumbing commands, because they give you access to
the inner workings of Git, and help demonstrate how and why Git does what it does. Many of these
commands aren’t meant to be used manually on the command line, but rather to be used as building
blocks for new tools and custom scripts.

When you run git init in a new or existing directory, Git creates the .git directory, which is where
almost everything that Git stores and manipulates is located. If you want to back up or clone your
repository, copying this single directory elsewhere gives you nearly everything you need. This entire
chapter basically deals with the stuff in this directory. Here’s what it looks like:

$ ls -F1

HEAD

config*

description

hooks/

info/

objects/

refs/

403

You may see some other files in there, but this is a fresh git init repository – it’s what you see by
default. The description file is only used by the GitWeb program, so don’t worry about it. The
config file contains your project-specific configuration options, and the info directory keeps a global
exclude file for ignored patterns that you don’t want to track in a .gitignore file. The hooks directory
contains your client- or server-side hook scripts, which are discussed in detail in Git Hooks.

This leaves four important entries: the HEAD and (yet to be created) index files, and the objects and
refs directories. These are the core parts of Git. The objects directory stores all the content for your
database, the refs directory stores pointers into commit objects in that data (branches), the HEAD file
points to the branch you currently have checked out, and the index file is where Git stores your
staging area information. You’ll now look at each of these sections in detail to see how Git operates.

Git Objects
Git is a content-addressable filesystem. Great. What does that mean? It means that at the core of Git is
a simple key-value data store. You can insert any kind of content into it, and it will give you back a key
that you can use to retrieve the content again at any time. To demonstrate, you can use the plumbing
command hash-object, which takes some data, stores it in your .git directory, and gives you back
the key the data is stored as. First, you initialize a new Git repository and verify that there is nothing in
the objects directory:

$ git init test

Initialized empty Git repository in /tmp/test/.git/

$ cd test

$ find .git/objects

.git/objects

.git/objects/info

.git/objects/pack

$ find .git/objects -type f

Git has initialized the objects directory and created pack and info subdirectories in it, but there are
no regular files. Now, store some text in your Git database:

$ echo 'test content' | git hash-object -w --stdin

d670460b4b4aece5915caf5c68d12f560a9fe3e4

The -w tells hash-object to store the object; otherwise, the command simply tells you what the key
would be. --stdin tells the command to read the content from stdin; if you don’t specify this, hash-
object expects a file path at the end. The output from the command is a 40-character checksum
hash. This is the SHA-1 hash – a checksum of the content you’re storing plus a header, which you’ll
learn about in a bit. Now you can see how Git has stored your data:

$ find .git/objects -type f

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

You can see a file in the objects directory. This is how Git stores the content initially – as a single file
per piece of content, named with the SHA-1 checksum of the content and its header. The subdirectory

404

is named with the first 2 characters of the SHA-1, and the filename is the remaining 38 characters.

You can pull the content back out of Git with the cat-file command. This command is sort of a Swiss
army knife for inspecting Git objects. Passing -p to it instructs the cat-file command to figure out
the type of content and display it nicely for you:

$ git cat-file -p d670460b4b4aece5915caf5c68d12f560a9fe3e4

test content

Now, you can add content to Git and pull it back out again. You can also do this with content in files.
For example, you can do some simple version control on a file. First, create a new file and save its
contents in your database:

$ echo 'version 1' > test.txt

$ git hash-object -w test.txt

83baae61804e65cc73a7201a7252750c76066a30

Then, write some new content to the file, and save it again:

$ echo 'version 2' > test.txt

$ git hash-object -w test.txt

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

Your database contains the two new versions of the file as well as the first content you stored there:

$ find .git/objects -type f

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

Now you can revert the file back to the first version

$ git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30 > test.txt

$ cat test.txt

version 1

or the second version:

$ git cat-file -p 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a > test.txt

$ cat test.txt

version 2

But remembering the SHA-1 key for each version of your file isn’t practical; plus, you aren’t storing
the filename in your system – just the content. This object type is called a blob. You can have Git tell

405

you the object type of any object in Git, given its SHA-1 key, with cat-file -t:

$ git cat-file -t 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a

blob

Tree Objects
The next type we’ll look at is the tree, which solves the problem of storing the filename and also
allows you to store a group of files together. Git stores content in a manner similar to a UNIX
filesystem, but a bit simplified. All the content is stored as tree and blob objects, with trees
corresponding to UNIX directory entries and blobs corresponding more or less to inodes or file
contents. A single tree object contains one or more tree entries, each of which contains a SHA-1
pointer to a blob or subtree with its associated mode, type, and filename. For example, the most
recent tree in a project may look something like this:

$ git cat-file -p master^{tree}

100644 blob a906cb2a4a904a152e80877d4088654daad0c859 README

100644 blob 8f94139338f9404f26296befa88755fc2598c289 Rakefile

040000 tree 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0 lib

The master^{tree} syntax specifies the tree object that is pointed to by the last commit on your
master branch. Notice that the lib subdirectory isn’t a blob but a pointer to another tree:

$ git cat-file -p 99f1a6d12cb4b6f19c8655fca46c3ecf317074e0

100644 blob 47c6340d6459e05787f644c2447d2595f5d3a54b simplegit.rb

Conceptually, the data that Git is storing is something like this:

406

圖表 148. Simple version of the Git data model.

You can fairly easily create your own tree. Git normally creates a tree by taking the state of your staging
area or index and writing a series of tree objects from it. So, to create a tree object, you first have to set
up an index by staging some files. To create an index with a single entry – the first version of your
test.txt file – you can use the plumbing command update-index. You use this command to
artificially add the earlier version of the test.txt file to a new staging area. You must pass it the
--add option because the file doesn’t yet exist in your staging area (you don’t even have a staging
area set up yet) and --cacheinfo because the file you’re adding isn’t in your directory but is in
your database. Then, you specify the mode, SHA-1, and filename:

$ git update-index --add --cacheinfo 100644 \

 83baae61804e65cc73a7201a7252750c76066a30 test.txt

In this case, you’re specifying a mode of 100644, which means it’s a normal file. Other options are
100755, which means it’s an executable file; and 120000, which specifies a symbolic link. The mode
is taken from normal UNIX modes but is much less flexible – these three modes are the only ones that
are valid for files (blobs) in Git (although other modes are used for directories and submodules).

Now, you can use the write-tree command to write the staging area out to a tree object. No -w
option is needed – calling write-tree automatically creates a tree object from the state of the index
if that tree doesn’t yet exist:

407

$ git write-tree

d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git cat-file -p d8329fc1cc938780ffdd9f94e0d364e0ea74f579

100644 blob 83baae61804e65cc73a7201a7252750c76066a30 test.txt

You can also verify that this is a tree object:

$ git cat-file -t d8329fc1cc938780ffdd9f94e0d364e0ea74f579

tree

You’ll now create a new tree with the second version of test.txt and a new file as well:

$ echo 'new file' > new.txt

$ git update-index test.txt

$ git update-index --add new.txt

Your staging area now has the new version of test.txt as well as the new file new.txt. Write out that
tree (recording the state of the staging area or index to a tree object) and see what it looks like:

$ git write-tree

0155eb4229851634a0f03eb265b69f5a2d56f341

$ git cat-file -p 0155eb4229851634a0f03eb265b69f5a2d56f341

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

Notice that this tree has both file entries and also that the test.txt SHA-1 is the “version 2” SHA-1
from earlier (1f7a7a). Just for fun, you’ll add the first tree as a subdirectory into this one. You can
read trees into your staging area by calling read-tree. In this case, you can read an existing tree into
your staging area as a subtree by using the --prefix option to read-tree:

$ git read-tree --prefix=bak d8329fc1cc938780ffdd9f94e0d364e0ea74f579

$ git write-tree

3c4e9cd789d88d8d89c1073707c3585e41b0e614

$ git cat-file -p 3c4e9cd789d88d8d89c1073707c3585e41b0e614

040000 tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579 bak

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 1f7a7a472abf3dd9643fd615f6da379c4acb3e3a test.txt

If you created a working directory from the new tree you just wrote, you would get the two files in the
top level of the working directory and a subdirectory named bak that contained the first version of the
test.txt file. You can think of the data that Git contains for these structures as being like this:

408

圖表 149. The content structure of your current Git data.

Commit Objects
You have three trees that specify the different snapshots of your project that you want to track, but the
earlier problem remains: you must remember all three SHA-1 values in order to recall the snapshots.
You also don’t have any information about who saved the snapshots, when they were saved, or why
they were saved. This is the basic information that the commit object stores for you.

To create a commit object, you call commit-tree and specify a single tree SHA-1 and which commit
objects, if any, directly preceded it. Start with the first tree you wrote:

$ echo 'first commit' | git commit-tree d8329f

fdf4fc3344e67ab068f836878b6c4951e3b15f3d

You will get a different hash value because of different creation time and author data. Replace commit
and tag hashes with your own checksums further in this chapter. Now you can look at your new
commit object with cat-file:

409

$ git cat-file -p fdf4fc3

tree d8329fc1cc938780ffdd9f94e0d364e0ea74f579

author Scott Chacon <schacon@gmail.com> 1243040974 -0700

committer Scott Chacon <schacon@gmail.com> 1243040974 -0700

first commit

The format for a commit object is simple: it specifies the top-level tree for the snapshot of the project
at that point; the author/committer information (which uses your user.name and user.email
configuration settings and a timestamp); a blank line, and then the commit message.

Next, you’ll write the other two commit objects, each referencing the commit that came directly
before it:

$ echo 'second commit' | git commit-tree 0155eb -p fdf4fc3

cac0cab538b970a37ea1e769cbbde608743bc96d

$ echo 'third commit' | git commit-tree 3c4e9c -p cac0cab

1a410efbd13591db07496601ebc7a059dd55cfe9

Each of the three commit objects points to one of the three snapshot trees you created. Oddly enough,
you have a real Git history now that you can view with the git log command, if you run it on the last
commit SHA-1:

410

$ git log --stat 1a410e

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:15:24 2009 -0700

 third commit

 bak/test.txt | 1 +

 1 file changed, 1 insertion(+)

commit cac0cab538b970a37ea1e769cbbde608743bc96d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:14:29 2009 -0700

 second commit

 new.txt | 1 +

 test.txt | 2 +-

 2 files changed, 2 insertions(+), 1 deletion(-)

commit fdf4fc3344e67ab068f836878b6c4951e3b15f3d

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:09:34 2009 -0700

 first commit

 test.txt | 1 +

 1 file changed, 1 insertion(+)

Amazing. You’ve just done the low-level operations to build up a Git history without using any of the
front end commands. This is essentially what Git does when you run the git add and git commit
commands – it stores blobs for the files that have changed, updates the index, writes out trees, and
writes commit objects that reference the top-level trees and the commits that came immediately
before them. These three main Git objects – the blob, the tree, and the commit – are initially stored as
separate files in your .git/objects directory. Here are all the objects in the example directory now,
commented with what they store:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # 'test content'

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

If you follow all the internal pointers, you get an object graph something like this:

411

圖表 150. All the objects in your Git directory.

Object Storage
We mentioned earlier that a header is stored with the content. Let’s take a minute to look at how Git
stores its objects. You’ll see how to store a blob object – in this case, the string “what is up, doc?” –
interactively in the Ruby scripting language.

You can start up interactive Ruby mode with the irb command:

$ irb

>> content = "what is up, doc?"

=> "what is up, doc?"

Git constructs a header that starts with the type of the object, in this case a blob. Then, it adds a space
followed by the size of the content and finally a null byte:

>> header = "blob #{content.length}\0"

=> "blob 16\u0000"

Git concatenates the header and the original content and then calculates the SHA-1 checksum of that
new content. You can calculate the SHA-1 value of a string in Ruby by including the SHA1 digest library
with the require command and then calling Digest::SHA1.hexdigest() with the string:

412

>> store = header + content

=> "blob 16\u0000what is up, doc?"

>> require 'digest/sha1'

=> true

>> sha1 = Digest::SHA1.hexdigest(store)

=> "bd9dbf5aae1a3862dd1526723246b20206e5fc37"

Git compresses the new content with zlib, which you can do in Ruby with the zlib library. First, you
need to require the library and then run Zlib::Deflate.deflate() on the content:

>> require 'zlib'

=> true

>> zlib_content = Zlib::Deflate.deflate(store)

=> "x\x9CK\xCA\xC9OR04c(\xCFH,Q\xC8,V(-\xD0QH\xC9O\xB6\a\x00_\x1C\a\x9D"

Finally, you’ll write your zlib-deflated content to an object on disk. You’ll determine the path of the
object you want to write out (the first two characters of the SHA-1 value being the subdirectory name,
and the last 38 characters being the filename within that directory). In Ruby, you can use the
FileUtils.mkdir_p() function to create the subdirectory if it doesn’t exist. Then, open the file
with File.open() and write out the previously zlib-compressed content to the file with a write()
call on the resulting file handle:

>> path = '.git/objects/' + sha1[0,2] + '/' + sha1[2,38]

=> ".git/objects/bd/9dbf5aae1a3862dd1526723246b20206e5fc37"

>> require 'fileutils'

=> true

>> FileUtils.mkdir_p(File.dirname(path))

=> ".git/objects/bd"

>> File.open(path, 'w') { |f| f.write zlib_content }

=> 32

That’s it – you’ve created a valid Git blob object. All Git objects are stored the same way, just with
different types – instead of the string blob, the header will begin with commit or tree. Also, although
the blob content can be nearly anything, the commit and tree content are very specifically formatted.

Git References
You can run something like git log 1a410e to look through your whole history, but you still have to
remember that 1a410e is the last commit in order to walk that history to find all those objects. You
need a file in which you can store the SHA-1 value under a simple name so you can use that pointer
rather than the raw SHA-1 value.

In Git, these are called “references” or “refs”; you can find the files that contain the SHA-1 values
in the .git/refs directory. In the current project, this directory contains no files, but it does contain a
simple structure:

413

$ find .git/refs

.git/refs

.git/refs/heads

.git/refs/tags

$ find .git/refs -type f

To create a new reference that will help you remember where your latest commit is, you can
technically do something as simple as this:

$ echo "1a410efbd13591db07496601ebc7a059dd55cfe9" >

.git/refs/heads/master

Now, you can use the head reference you just created instead of the SHA-1 value in your Git
commands:

$ git log --pretty=oneline master

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You aren’t encouraged to directly edit the reference files. Git provides a safer command to do this if
you want to update a reference called update-ref:

$ git update-ref refs/heads/master

1a410efbd13591db07496601ebc7a059dd55cfe9

That’s basically what a branch in Git is: a simple pointer or reference to the head of a line of work. To
create a branch back at the second commit, you can do this:

$ git update-ref refs/heads/test cac0ca

Your branch will contain only work from that commit down:

$ git log --pretty=oneline test

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, your Git database conceptually looks something like this:

414

圖表 151. Git directory objects with branch head references included.

When you run commands like git branch (branchname), Git basically runs that update-ref
command to add the SHA-1 of the last commit of the branch you’re on into whatever new reference
you want to create.

The HEAD
The question now is, when you run git branch (branchname), how does Git know the SHA-1 of the
last commit? The answer is the HEAD file.

The HEAD file is a symbolic reference to the branch you’re currently on. By symbolic reference, we
mean that unlike a normal reference, it doesn’t generally contain a SHA-1 value but rather a pointer
to another reference. If you look at the file, you’ll normally see something like this:

$ cat .git/HEAD

ref: refs/heads/master

If you run git checkout test, Git updates the file to look like this:

$ cat .git/HEAD

ref: refs/heads/test

When you run git commit, it creates the commit object, specifying the parent of that commit object
to be whatever SHA-1 value the reference in HEAD points to.

You can also manually edit this file, but again a safer command exists to do so: symbolic-ref. You
can read the value of your HEAD via this command:

415

$ git symbolic-ref HEAD

refs/heads/master

You can also set the value of HEAD:

$ git symbolic-ref HEAD refs/heads/test

$ cat .git/HEAD

ref: refs/heads/test

You can’t set a symbolic reference outside of the refs style:

$ git symbolic-ref HEAD test

fatal: Refusing to point HEAD outside of refs/

Tags
We just finished discussing Git’s three main object types, but there is a fourth. The tag object is very
much like a commit object – it contains a tagger, a date, a message, and a pointer. The main difference
is that a tag object generally points to a commit rather than a tree. It’s like a branch reference, but it
never moves – it always points to the same commit but gives it a friendlier name.

As discussed in Git 基礎, there are two types of tags: annotated and lightweight. You can make a
lightweight tag by running something like this:

$ git update-ref refs/tags/v1.0 cac0cab538b970a37ea1e769cbbde608743bc96d

That is all a lightweight tag is – a reference that never moves. An annotated tag is more complex,
however. If you create an annotated tag, Git creates a tag object and then writes a reference to point to
it rather than directly to the commit. You can see this by creating an annotated tag (-a specifies that
it’s an annotated tag):

$ git tag -a v1.1 1a410efbd13591db07496601ebc7a059dd55cfe9 -m 'test tag'

Here’s the object SHA-1 value it created:

$ cat .git/refs/tags/v1.1

9585191f37f7b0fb9444f35a9bf50de191beadc2

Now, run the cat-file command on that SHA-1 value:

416

$ git cat-file -p 9585191f37f7b0fb9444f35a9bf50de191beadc2

object 1a410efbd13591db07496601ebc7a059dd55cfe9

type commit

tag v1.1

tagger Scott Chacon <schacon@gmail.com> Sat May 23 16:48:58 2009 -0700

test tag

Notice that the object entry points to the commit SHA-1 value that you tagged. Also notice that it
doesn’t need to point to a commit; you can tag any Git object. In the Git source code, for example,
the maintainer has added their GPG public key as a blob object and then tagged it. You can view the
public key by running this in a clone of the Git repository:

$ git cat-file blob junio-gpg-pub

The Linux kernel repository also has a non-commit-pointing tag object – the first tag created points to
the initial tree of the import of the source code.

Remotes
The third type of reference that you’ll see is a remote reference. If you add a remote and push to it,
Git stores the value you last pushed to that remote for each branch in the refs/remotes directory.
For instance, you can add a remote called origin and push your master branch to it:

$ git remote add origin git@github.com:schacon/simplegit-progit.git

$ git push origin master

Counting objects: 11, done.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (7/7), 716 bytes, done.

Total 7 (delta 2), reused 4 (delta 1)

To git@github.com:schacon/simplegit-progit.git

 a11bef0..ca82a6d master -> master

Then, you can see what the master branch on the origin remote was the last time you
communicated with the server, by checking the refs/remotes/origin/master file:

$ cat .git/refs/remotes/origin/master

ca82a6dff817ec66f44342007202690a93763949

Remote references differ from branches (refs/heads references) mainly in that they’re considered
read-only. You can git checkout to one, but Git won’t point HEAD at one, so you’ll never update it
with a commit command. Git manages them as bookmarks to the last known state of where those
branches were on those servers.

417

Packfiles
Let’s go back to the objects database for your test Git repository. At this point, you have 11 objects –
4 blobs, 3 trees, 3 commits, and 1 tag:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f03eb265b69f5a2d56f341 # tree 2

.git/objects/1a/410efbd13591db07496601ebc7a059dd55cfe9 # commit 3

.git/objects/1f/7a7a472abf3dd9643fd615f6da379c4acb3e3a # test.txt v2

.git/objects/3c/4e9cd789d88d8d89c1073707c3585e41b0e614 # tree 3

.git/objects/83/baae61804e65cc73a7201a7252750c76066a30 # test.txt v1

.git/objects/95/85191f37f7b0fb9444f35a9bf50de191beadc2 # tag

.git/objects/ca/c0cab538b970a37ea1e769cbbde608743bc96d # commit 2

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4 # 'test content'

.git/objects/d8/329fc1cc938780ffdd9f94e0d364e0ea74f579 # tree 1

.git/objects/fa/49b077972391ad58037050f2a75f74e3671e92 # new.txt

.git/objects/fd/f4fc3344e67ab068f836878b6c4951e3b15f3d # commit 1

Git compresses the contents of these files with zlib, and you’re not storing much, so all these files
collectively take up only 925 bytes. You’ll add some larger content to the repository to demonstrate
an interesting feature of Git. To demonstrate, we’ll add the repo.rb file from the Grit library – this is
about a 22K source code file:

$ curl

https://raw.githubusercontent.com/mojombo/grit/master/lib/grit/repo.rb >

repo.rb

$ git checkout master

$ git add repo.rb

$ git commit -m 'added repo.rb'

[master 484a592] added repo.rb

 3 files changed, 709 insertions(+), 2 deletions(-)

 delete mode 100644 bak/test.txt

 create mode 100644 repo.rb

 rewrite test.txt (100%)

If you look at the resulting tree, you can see the SHA-1 value your repo.rb file got for the blob object:

$ git cat-file -p master^{tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob 033b4468fa6b2a9547a70d88d1bbe8bf3f9ed0d5 repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

You can then use git cat-file to see how big that object is:

$ git cat-file -s 033b4468fa6b2a9547a70d88d1bbe8bf3f9ed0d5

22044

418

Now, modify that file a little, and see what happens:

$ echo '# testing' >> repo.rb

$ git commit -am 'modified repo a bit'

[master 2431da6] modified repo.rb a bit

 1 file changed, 1 insertion(+)

Check the tree created by that commit, and you see something interesting:

$ git cat-file -p master^{tree}

100644 blob fa49b077972391ad58037050f2a75f74e3671e92 new.txt

100644 blob b042a60ef7dff760008df33cee372b945b6e884e repo.rb

100644 blob e3f094f522629ae358806b17daf78246c27c007b test.txt

The blob is now a different blob, which means that although you added only a single line to the end of
a 400-line file, Git stored that new content as a completely new object:

$ git cat-file -s b042a60ef7dff760008df33cee372b945b6e884e

22054

You have two nearly identical 22K objects on your disk (each compressed to approximately 7K).
Wouldn’t it be nice if Git could store one of them in full but then the second object only as the delta
between it and the first?

It turns out that it can. The initial format in which Git saves objects on disk is called a “loose” object
format. However, occasionally Git packs up several of these objects into a single binary file called a
“packfile” in order to save space and be more efficient. Git does this if you have too many loose
objects around, if you run the git gc command manually, or if you push to a remote server. To see
what happens, you can manually ask Git to pack up the objects by calling the git gc command:

$ git gc

Counting objects: 18, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (14/14), done.

Writing objects: 100% (18/18), done.

Total 18 (delta 3), reused 0 (delta 0)

If you look in your objects directory, you’ll find that most of your objects are gone, and a new pair of
files has appeared:

419

$ find .git/objects -type f

.git/objects/bd/9dbf5aae1a3862dd1526723246b20206e5fc37

.git/objects/d6/70460b4b4aece5915caf5c68d12f560a9fe3e4

.git/objects/info/packs

.git/objects/pack/pack-978e03944f5c581011e6998cd0e9e30000905586.idx

.git/objects/pack/pack-978e03944f5c581011e6998cd0e9e30000905586.pack

The objects that remain are the blobs that aren’t pointed to by any commit – in this case, the “what
is up, doc?” example and the “test content” example blobs you created earlier. Because you never
added them to any commits, they’re considered dangling and aren’t packed up in your new
packfile.

The other files are your new packfile and an index. The packfile is a single file containing the contents
of all the objects that were removed from your filesystem. The index is a file that contains offsets into
that packfile so you can quickly seek to a specific object. What is cool is that although the objects on
disk before you ran the gc were collectively about 15K in size, the new packfile is only 7K. You’ve cut
your disk usage by half by packing your objects.

How does Git do this? When Git packs objects, it looks for files that are named and sized similarly, and
stores just the deltas from one version of the file to the next. You can look into the packfile and see
what Git did to save space. The git verify-pack plumbing command allows you to see what was
packed up:

$ git verify-pack -v .git/objects/pack/pack-

978e03944f5c581011e6998cd0e9e30000905586.idx

2431da676938450a4d72e260db3bf7b0f587bbc1 commit 223 155 12

69bcdaff5328278ab1c0812ce0e07fa7d26a96d7 commit 214 152 167

80d02664cb23ed55b226516648c7ad5d0a3deb90 commit 214 145 319

43168a18b7613d1281e5560855a83eb8fde3d687 commit 213 146 464

092917823486a802e94d727c820a9024e14a1fc2 commit 214 146 610

702470739ce72005e2edff522fde85d52a65df9b commit 165 118 756

d368d0ac0678cbe6cce505be58126d3526706e54 tag 130 122 874

fe879577cb8cffcdf25441725141e310dd7d239b tree 136 136 996

d8329fc1cc938780ffdd9f94e0d364e0ea74f579 tree 36 46 1132

deef2e1b793907545e50a2ea2ddb5ba6c58c4506 tree 136 136 1178

d982c7cb2c2a972ee391a85da481fc1f9127a01d tree 6 17 1314 1 \

 deef2e1b793907545e50a2ea2ddb5ba6c58c4506

3c4e9cd789d88d8d89c1073707c3585e41b0e614 tree 8 19 1331 1 \

 deef2e1b793907545e50a2ea2ddb5ba6c58c4506

0155eb4229851634a0f03eb265b69f5a2d56f341 tree 71 76 1350

83baae61804e65cc73a7201a7252750c76066a30 blob 10 19 1426

fa49b077972391ad58037050f2a75f74e3671e92 blob 9 18 1445

b042a60ef7dff760008df33cee372b945b6e884e blob 22054 5799 1463

033b4468fa6b2a9547a70d88d1bbe8bf3f9ed0d5 blob 9 20 7262 1 \

 b042a60ef7dff760008df33cee372b945b6e884e

1f7a7a472abf3dd9643fd615f6da379c4acb3e3a blob 10 19 7282

non delta: 15 objects

chain length = 1: 3 objects

.git/objects/pack/pack-978e03944f5c581011e6998cd0e9e30000905586.pack: ok

420

Here, the 033b4 blob, which if you remember was the first version of your repo.rb file, is referencing
the b042a blob, which was the second version of the file. The third column in the output is the size of
the object in the pack, so you can see that b042a takes up 22K of the file, but that 033b4 only takes up
9 bytes. What is also interesting is that the second version of the file is the one that is stored intact,
whereas the original version is stored as a delta – this is because you’re most likely to need faster
access to the most recent version of the file.

The really nice thing about this is that it can be repacked at any time. Git will occasionally repack your
database automatically, always trying to save more space, but you can also manually repack at any
time by running git gc by hand.

The Refspec
Throughout this book, we’ve used simple mappings from remote branches to local references, but
they can be more complex. Suppose you add a remote like this:

$ git remote add origin https://github.com/schacon/simplegit-progit

It adds a section to your .git/config file, specifying the name of the remote (origin), the URL of
the remote repository, and the refspec for fetching:

[remote "origin"]

 url = https://github.com/schacon/simplegit-progit

 fetch = +refs/heads/*:refs/remotes/origin/*

The format of the refspec is an optional +, followed by <src>:<dst>, where <src> is the pattern for
references on the remote side and <dst> is where those references will be written locally. The + tells
Git to update the reference even if it isn’t a fast-forward.

In the default case that is automatically written by a git remote add command, Git fetches all the
references under refs/heads/ on the server and writes them to refs/remotes/origin/ locally. So,
if there is a master branch on the server, you can access the log of that branch locally via

$ git log origin/master

$ git log remotes/origin/master

$ git log refs/remotes/origin/master

They’re all equivalent, because Git expands each of them to refs/remotes/origin/master.

If you want Git instead to pull down only the master branch each time, and not every other branch on
the remote server, you can change the fetch line to

fetch = +refs/heads/master:refs/remotes/origin/master

This is just the default refspec for git fetch for that remote. If you want to do something one time,
you can specify the refspec on the command line, too. To pull the master branch on the remote down

421

to origin/mymaster locally, you can run

$ git fetch origin master:refs/remotes/origin/mymaster

You can also specify multiple refspecs. On the command line, you can pull down several branches like
so:

$ git fetch origin master:refs/remotes/origin/mymaster \

 topic:refs/remotes/origin/topic

From git@github.com:schacon/simplegit

 ! [rejected] master -> origin/mymaster (non fast forward)

 * [new branch] topic -> origin/topic

In this case, the master branch pull was rejected because it wasn’t a fast-forward reference. You can
override that by specifying the + in front of the refspec.

You can also specify multiple refspecs for fetching in your configuration file. If you want to always fetch
the master and experiment branches, add two lines:

[remote "origin"]

 url = https://github.com/schacon/simplegit-progit

 fetch = +refs/heads/master:refs/remotes/origin/master

 fetch = +refs/heads/experiment:refs/remotes/origin/experiment

You can’t use partial globs in the pattern, so this would be invalid:

fetch = +refs/heads/qa*:refs/remotes/origin/qa*

However, you can use namespaces (or directories) to accomplish something like that. If you have a QA
team that pushes a series of branches, and you want to get the master branch and any of the QA
team’s branches but nothing else, you can use a config section like this:

[remote "origin"]

 url = https://github.com/schacon/simplegit-progit

 fetch = +refs/heads/master:refs/remotes/origin/master

 fetch = +refs/heads/qa/*:refs/remotes/origin/qa/*

If you have a complex workflow process that has a QA team pushing branches, developers pushing
branches, and integration teams pushing and collaborating on remote branches, you can namespace
them easily this way.

Pushing Refspecs
It’s nice that you can fetch namespaced references that way, but how does the QA team get their
branches into a qa/ namespace in the first place? You accomplish that by using refspecs to push.

422

If the QA team wants to push their master branch to qa/master on the remote server, they can run

$ git push origin master:refs/heads/qa/master

If they want Git to do that automatically each time they run git push origin, they can add a push
value to their config file:

[remote "origin"]

 url = https://github.com/schacon/simplegit-progit

 fetch = +refs/heads/*:refs/remotes/origin/*

 push = refs/heads/master:refs/heads/qa/master

Again, this will cause a git push origin to push the local master branch to the remote qa/master
branch by default.

Deleting References
You can also use the refspec to delete references from the remote server by running something like
this:

$ git push origin :topic

Because the refspec is <src>:<dst>, by leaving off the <src> part, this basically says to make the
topic branch on the remote nothing, which deletes it.

Transfer Protocols
Git can transfer data between two repositories in two major ways: the “dumb” protocol and the
“smart” protocol. This section will quickly cover how these two main protocols operate.

The Dumb Protocol
If you’re setting up a repository to be served read-only over HTTP, the dumb protocol is likely what
will be used. This protocol is called “dumb” because it requires no Git-specific code on the server
side during the transport process; the fetch process is a series of HTTP GET requests, where the client
can assume the layout of the Git repository on the server.

筆記
The dumb protocol is fairly rarely used these days. It’s difficult to secure or make
private, so most Git hosts (both cloud-based and on-premises) will refuse to use it. It’s
generally advised to use the smart protocol, which we describe a bit further on.

Let’s follow the http-fetch process for the simplegit library:

$ git clone http://server/simplegit-progit.git

The first thing this command does is pull down the info/refs file. This file is written by the update-

423

server-info command, which is why you need to enable that as a post-receive hook in order for
the HTTP transport to work properly:

=> GET info/refs

ca82a6dff817ec66f44342007202690a93763949 refs/heads/master

Now you have a list of the remote references and SHA-1s. Next, you look for what the HEAD reference is
so you know what to check out when you’re finished:

=> GET HEAD

ref: refs/heads/master

You need to check out the master branch when you’ve completed the process. At this point, you’re
ready to start the walking process. Because your starting point is the ca82a6 commit object you saw in
the info/refs file, you start by fetching that:

=> GET objects/ca/82a6dff817ec66f44342007202690a93763949

(179 bytes of binary data)

You get an object back – that object is in loose format on the server, and you fetched it over a static
HTTP GET request. You can zlib-uncompress it, strip off the header, and look at the commit content:

$ git cat-file -p ca82a6dff817ec66f44342007202690a93763949

tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf

parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

author Scott Chacon <schacon@gmail.com> 1205815931 -0700

committer Scott Chacon <schacon@gmail.com> 1240030591 -0700

changed the version number

Next, you have two more objects to retrieve – cfda3b, which is the tree of content that the commit we
just retrieved points to; and 085bb3, which is the parent commit:

=> GET objects/08/5bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

(179 bytes of data)

That gives you your next commit object. Grab the tree object:

=> GET objects/cf/da3bf379e4f8dba8717dee55aab78aef7f4daf

(404 - Not Found)

Oops – it looks like that tree object isn’t in loose format on the server, so you get a 404 response
back. There are a couple of reasons for this – the object could be in an alternate repository, or it could
be in a packfile in this repository. Git checks for any listed alternates first:

424

=> GET objects/info/http-alternates

(empty file)

If this comes back with a list of alternate URLs, Git checks for loose files and packfiles there – this is a
nice mechanism for projects that are forks of one another to share objects on disk. However, because
no alternates are listed in this case, your object must be in a packfile. To see what packfiles are
available on this server, you need to get the objects/info/packs file, which contains a listing of
them (also generated by update-server-info):

=> GET objects/info/packs

P pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

There is only one packfile on the server, so your object is obviously in there, but you’ll check the
index file to make sure. This is also useful if you have multiple packfiles on the server, so you can see
which packfile contains the object you need:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.idx

(4k of binary data)

Now that you have the packfile index, you can see if your object is in it – because the index lists the
SHA-1s of the objects contained in the packfile and the offsets to those objects. Your object is there, so
go ahead and get the whole packfile:

=> GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

(13k of binary data)

You have your tree object, so you continue walking your commits. They’re all also within the packfile
you just downloaded, so you don’t have to do any more requests to your server. Git checks out a
working copy of the master branch that was pointed to by the HEAD reference you downloaded at the
beginning.

The Smart Protocol
The dumb protocol is simple but a bit inefficient, and it can’t handle writing of data from the client to
the server. The smart protocol is a more common method of transferring data, but it requires a process
on the remote end that is intelligent about Git – it can read local data, figure out what the client has
and needs, and generate a custom packfile for it. There are two sets of processes for transferring data:
a pair for uploading data and a pair for downloading data.

Uploading Data

 To upload data to a remote process, Git uses the send-pack and receive-pack processes. The
send-pack process runs on the client and connects to a receive-pack process on the remote side.

425

SSH

For example, say you run git push origin master in your project, and origin is defined as a URL
that uses the SSH protocol. Git fires up the send-pack process, which initiates a connection over SSH
to your server. It tries to run a command on the remote server via an SSH call that looks something like
this:

$ ssh -x git@server "git-receive-pack 'simplegit-progit.git'"

00a5ca82a6dff817ec66f4437202690a93763949 refs/heads/master□report-

status \

 delete-refs side-band-64k quiet ofs-delta \

 agent=git/2:2.1.1+github-607-gfba4028 delete-refs

0000

The git-receive-pack command immediately responds with one line for each reference it currently
has – in this case, just the master branch and its SHA-1. The first line also has a list of the server’s
capabilities (here, report-status, delete-refs, and some others, including the client identifier).

Each line starts with a 4-character hex value specifying how long the rest of the line is. Your first line
starts with 00a5, which is hexadecimal for 165, meaning that 165 bytes remain on that line. The next
line is 0000, meaning the server is done with its references listing.

Now that it knows the server’s state, your send-pack process determines what commits it has that
the server doesn’t. For each reference that this push will update, the send-pack process tells the
receive-pack process that information. For instance, if you’re updating the master branch and
adding an experiment branch, the send-pack response may look something like this:

0076ca82a6dff817ec66f44342007202690a93763949

15027957951b64cf874c3557a0f3547bd83b3ff6 \

 refs/heads/master report-status

006c00

cdfdb42577e2506715f8cfeacdbabc092bf63e8d \

 refs/heads/experiment

0000

Git sends a line for each reference you’re updating with the line’s length, the old SHA-1, the new
SHA-1, and the reference that is being updated. The first line also has the client’s capabilities. The
SHA-1 value of all '0’s means that nothing was there before – because you’re adding the experiment
reference. If you were deleting a reference, you would see the opposite: all '0’s on the right side.

Next, the client sends a packfile of all the objects the server doesn’t have yet. Finally, the server
responds with a success (or failure) indication:

000eunpack ok

HTTP(S)

This process is mostly the same over HTTP, though the handshaking is a bit different. The connection
is initiated with this request:

426

=> GET http://server/simplegit-progit.git/info/refs?service=git-receive-

pack

001f# service=git-receive-pack

00ab6c5f0e45abd7832bf23074a333f739977c9e8188 refs/heads/master□report-

status \

 delete-refs side-band-64k quiet ofs-delta \

 agent=git/2:2.1.1~vmg-bitmaps-bugaloo-608-g116744e

0000

That’s the end of the first client-server exchange. The client then makes another request, this time a
POST, with the data that send-pack provides.

=> POST http://server/simplegit-progit.git/git-receive-pack

The POST request includes the send-pack output and the packfile as its payload. The server then
indicates success or failure with its HTTP response.

Downloading Data

 When you download data, the fetch-pack and upload-pack processes are involved. The client
initiates a fetch-pack process that connects to an upload-pack process on the remote side to
negotiate what data will be transferred down.

SSH

If you’re doing the fetch over SSH, fetch-pack runs something like this:

$ ssh -x git@server "git-upload-pack 'simplegit-progit.git'"

After fetch-pack connects, upload-pack sends back something like this:

00dfca82a6dff817ec66f44342007202690a93763949 HEAD□multi_ack thin-pack \

 side-band side-band-64k ofs-delta shallow no-progress include-tag \

 multi_ack_detailed symref=HEAD:refs/heads/master \

 agent=git/2:2.1.1+github-607-gfba4028

003fe2409a098dc3e53539a9028a94b6224db9d6a6b6 refs/heads/master

0000

This is very similar to what receive-pack responds with, but the capabilities are different. In
addition, it sends back what HEAD points to (symref=HEAD:refs/heads/master) so the client
knows what to check out if this is a clone.

At this point, the fetch-pack process looks at what objects it has and responds with the objects that
it needs by sending “want” and then the SHA-1 it wants. It sends all the objects it already has with
“have” and then the SHA-1. At the end of this list, it writes “done” to initiate the upload-pack
process to begin sending the packfile of the data it needs:

427

003cwant ca82a6dff817ec66f44342007202690a93763949 ofs-delta

0032have 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7

0009done

0000

HTTP(S)

The handshake for a fetch operation takes two HTTP requests. The first is a GET to the same endpoint
used in the dumb protocol:

=> GET $GIT_URL/info/refs?service=git-upload-pack

001e# service=git-upload-pack

00e7ca82a6dff817ec66f44342007202690a93763949 HEAD□multi_ack thin-pack \

 side-band side-band-64k ofs-delta shallow no-progress include-tag \

 multi_ack_detailed no-done symref=HEAD:refs/heads/master \

 agent=git/2:2.1.1+github-607-gfba4028

003fca82a6dff817ec66f44342007202690a93763949 refs/heads/master

0000

This is very similar to invoking git-upload-pack over an SSH connection, but the second exchange
is performed as a separate request:

=> POST $GIT_URL/git-upload-pack HTTP/1.0

0032want 0a53e9ddeaddad63ad106860237bbf53411d11a7

0032have 441b40d833fdfa93eb2908e52742248faf0ee993

0000

Again, this is the same format as above. The response to this request indicates success or failure, and
includes the packfile.

Protocols Summary
This section contains a very basic overview of the transfer protocols. The protocol includes many other
features, such as multi_ack or side-band capabilities, but covering them is outside the scope of this
book. We’ve tried to give you a sense of the general back-and-forth between client and server; if you
need more knowledge than this, you’ll probably want to take a look at the Git source code.

Maintenance and Data Recovery
Occasionally, you may have to do some cleanup – make a repository more compact, clean up an
imported repository, or recover lost work. This section will cover some of these scenarios.

Maintenance
Occasionally, Git automatically runs a command called “auto gc”. Most of the time, this command
does nothing. However, if there are too many loose objects (objects not in a packfile) or too many
packfiles, Git launches a full-fledged git gc command. The “gc” stands for garbage collect, and the
command does a number of things: it gathers up all the loose objects and places them in packfiles, it

428

consolidates packfiles into one big packfile, and it removes objects that aren’t reachable from any
commit and are a few months old.

You can run auto gc manually as follows:

$ git gc --auto

Again, this generally does nothing. You must have around 7,000 loose objects or more than 50
packfiles for Git to fire up a real gc command. You can modify these limits with the gc.auto and
gc.autopacklimit config settings, respectively.

The other thing gc will do is pack up your references into a single file. Suppose your repository
contains the following branches and tags:

$ find .git/refs -type f

.git/refs/heads/experiment

.git/refs/heads/master

.git/refs/tags/v1.0

.git/refs/tags/v1.1

If you run git gc, you’ll no longer have these files in the refs directory. Git will move them for the
sake of efficiency into a file named .git/packed-refs that looks like this:

$ cat .git/packed-refs

pack-refs with: peeled fully-peeled

cac0cab538b970a37ea1e769cbbde608743bc96d refs/heads/experiment

ab1afef80fac8e34258ff41fc1b867c702daa24b refs/heads/master

cac0cab538b970a37ea1e769cbbde608743bc96d refs/tags/v1.0

9585191f37f7b0fb9444f35a9bf50de191beadc2 refs/tags/v1.1

^1a410efbd13591db07496601ebc7a059dd55cfe9

If you update a reference, Git doesn’t edit this file but instead writes a new file to refs/heads. To get
the appropriate SHA-1 for a given reference, Git checks for that reference in the refs directory and
then checks the packed-refs file as a fallback. However, if you can’t find a reference in the refs
directory, it’s probably in your packed-refs file.

Notice the last line of the file, which begins with a ^. This means the tag directly above is an annotated
tag and that line is the commit that the annotated tag points to.

Data Recovery
At some point in your Git journey, you may accidentally lose a commit. Generally, this happens
because you force-delete a branch that had work on it, and it turns out you wanted the branch after
all; or you hard-reset a branch, thus abandoning commits that you wanted something from. Assuming
this happens, how can you get your commits back?

Here’s an example that hard-resets the master branch in your test repository to an older commit and
then recovers the lost commits. First, let’s review where your repository is at this point:

429

$ git log --pretty=oneline

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Now, move the master branch back to the middle commit:

$ git reset --hard 1a410efbd13591db07496601ebc7a059dd55cfe9

HEAD is now at 1a410ef third commit

$ git log --pretty=oneline

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

You’ve effectively lost the top two commits – you have no branch from which those commits are
reachable. You need to find the latest commit SHA-1 and then add a branch that points to it. The trick
is finding that latest commit SHA-1 – it’s not like you’ve memorized it, right?

Often, the quickest way is to use a tool called git reflog. As you’re working, Git silently records
what your HEAD is every time you change it. Each time you commit or change branches, the reflog is
updated. The reflog is also updated by the git update-ref command, which is another reason to
use it instead of just writing the SHA-1 value to your ref files, as we covered in Git References. You can
see where you’ve been at any time by running git reflog:

$ git reflog

1a410ef HEAD@{0}: reset: moving to 1a410ef

ab1afef HEAD@{1}: commit: modified repo.rb a bit

484a592 HEAD@{2}: commit: added repo.rb

Here we can see the two commits that we have had checked out, however there is not much
information here. To see the same information in a much more useful way, we can run git log -g,
which will give you a normal log output for your reflog.

430

$ git log -g

commit 1a410efbd13591db07496601ebc7a059dd55cfe9

Reflog: HEAD@{0} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:22:37 2009 -0700

 third commit

commit ab1afef80fac8e34258ff41fc1b867c702daa24b

Reflog: HEAD@{1} (Scott Chacon <schacon@gmail.com>)

Reflog message: updating HEAD

Author: Scott Chacon <schacon@gmail.com>

Date: Fri May 22 18:15:24 2009 -0700

 modified repo.rb a bit

It looks like the bottom commit is the one you lost, so you can recover it by creating a new branch at
that commit. For example, you can start a branch named recover-branch at that commit (ab1afef):

$ git branch recover-branch ab1afef

$ git log --pretty=oneline recover-branch

ab1afef80fac8e34258ff41fc1b867c702daa24b modified repo a bit

484a59275031909e19aadb7c92262719cfcdf19a added repo.rb

1a410efbd13591db07496601ebc7a059dd55cfe9 third commit

cac0cab538b970a37ea1e769cbbde608743bc96d second commit

fdf4fc3344e67ab068f836878b6c4951e3b15f3d first commit

Cool – now you have a branch named recover-branch that is where your master branch used to be,
making the first two commits reachable again. Next, suppose your loss was for some reason not in the
reflog – you can simulate that by removing recover-branch and deleting the reflog. Now the first
two commits aren’t reachable by anything:

$ git branch -D recover-branch

$ rm -Rf .git/logs/

Because the reflog data is kept in the .git/logs/ directory, you effectively have no reflog. How can
you recover that commit at this point? One way is to use the git fsck utility, which checks your
database for integrity. If you run it with the --full option, it shows you all objects that aren’t
pointed to by another object:

431

$ git fsck --full

Checking object directories: 100% (256/256), done.

Checking objects: 100% (18/18), done.

dangling blob d670460b4b4aece5915caf5c68d12f560a9fe3e4

dangling commit ab1afef80fac8e34258ff41fc1b867c702daa24b

dangling tree aea790b9a58f6cf6f2804eeac9f0abbe9631e4c9

dangling blob 7108f7ecb345ee9d0084193f147cdad4d2998293

In this case, you can see your missing commit after the string “dangling commit”. You can recover it
the same way, by adding a branch that points to that SHA-1.

Removing Objects
There are a lot of great things about Git, but one feature that can cause issues is the fact that a git
clone downloads the entire history of the project, including every version of every file. This is fine if
the whole thing is source code, because Git is highly optimized to compress that data efficiently.
However, if someone at any point in the history of your project added a single huge file, every clone for
all time will be forced to download that large file, even if it was removed from the project in the very
next commit. Because it’s reachable from the history, it will always be there.

This can be a huge problem when you’re converting Subversion or Perforce repositories into Git.
Because you don’t download the whole history in those systems, this type of addition carries few
consequences. If you did an import from another system or otherwise find that your repository is
much larger than it should be, here is how you can find and remove large objects.

Be warned: this technique is destructive to your commit history. It rewrites every commit object
since the earliest tree you have to modify to remove a large file reference. If you do this immediately
after an import, before anyone has started to base work on the commit, you’re fine – otherwise, you
have to notify all contributors that they must rebase their work onto your new commits.

To demonstrate, you’ll add a large file into your test repository, remove it in the next commit, find it,
and remove it permanently from the repository. First, add a large object to your history:

$ curl https://www.kernel.org/pub/software/scm/git/git-2.1.0.tar.gz >

git.tgz

$ git add git.tgz

$ git commit -m 'add git tarball'

[master 7b30847] add git tarball

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 git.tgz

Oops – you didn’t want to add a huge tarball to your project. Better get rid of it:

432

$ git rm git.tgz

rm 'git.tgz'

$ git commit -m 'oops - removed large tarball'

[master dadf725] oops - removed large tarball

 1 file changed, 0 insertions(+), 0 deletions(-)

 delete mode 100644 git.tgz

Now, gc your database and see how much space you’re using:

$ git gc

Counting objects: 17, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (13/13), done.

Writing objects: 100% (17/17), done.

Total 17 (delta 1), reused 10 (delta 0)

You can run the count-objects command to quickly see how much space you’re using:

$ git count-objects -v

count: 7

size: 32

in-pack: 17

packs: 1

size-pack: 4868

prune-packable: 0

garbage: 0

size-garbage: 0

The size-pack entry is the size of your packfiles in kilobytes, so you’re using almost 5MB. Before the
last commit, you were using closer to 2K – clearly, removing the file from the previous commit didn’t
remove it from your history. Every time anyone clones this repository, they will have to clone all 5MB
just to get this tiny project, because you accidentally added a big file. Let’s get rid of it.

First you have to find it. In this case, you already know what file it is. But suppose you didn’t; how
would you identify what file or files were taking up so much space? If you run git gc, all the objects
are in a packfile; you can identify the big objects by running another plumbing command called git
verify-pack and sorting on the third field in the output, which is file size. You can also pipe it
through the tail command because you’re only interested in the last few largest files:

$ git verify-pack -v .git/objects/pack/pack-29…69.idx \

 | sort -k 3 -n \

 | tail -3

dadf7258d699da2c8d89b09ef6670edb7d5f91b4 commit 229 159 12

033b4468fa6b2a9547a70d88d1bbe8bf3f9ed0d5 blob 22044 5792 4977696

82c99a3e86bb1267b236a4b6eff7868d97489af1 blob 4975916 4976258 1438

433

The big object is at the bottom: 5MB. To find out what file it is, you’ll use the rev-list command,
which you used briefly in Enforcing a Specific Commit-Message Format. If you pass --objects to
rev-list, it lists all the commit SHA-1s and also the blob SHA-1s with the file paths associated with
them. You can use this to find your blob’s name:

$ git rev-list --objects --all | grep 82c99a3

82c99a3e86bb1267b236a4b6eff7868d97489af1 git.tgz

Now, you need to remove this file from all trees in your past. You can easily see what commits
modified this file:

$ git log --oneline --branches -- git.tgz

dadf725 oops - removed large tarball

7b30847 add git tarball

You must rewrite all the commits downstream from 7b30847 to fully remove this file from your Git
history. To do so, you use filter-branch, which you used in Rewriting History:

$ git filter-branch --index-filter \

 'git rm --ignore-unmatch --cached git.tgz' -- 7b30847^..

Rewrite 7b30847d080183a1ab7d18fb202473b3096e9f34 (1/2)rm 'git.tgz'

Rewrite dadf7258d699da2c8d89b09ef6670edb7d5f91b4 (2/2)

Ref 'refs/heads/master' was rewritten

The --index-filter option is similar to the --tree-filter option used in Rewriting History,
except that instead of passing a command that modifies files checked out on disk, you’re modifying
your staging area or index each time.

Rather than remove a specific file with something like rm file, you have to remove it with git rm
--cached – you must remove it from the index, not from disk. The reason to do it this way is speed –
because Git doesn’t have to check out each revision to disk before running your filter, the process
can be much, much faster. You can accomplish the same task with --tree-filter if you want. The
--ignore-unmatch option to git rm tells it not to error out if the pattern you’re trying to remove
isn’t there. Finally, you ask filter-branch to rewrite your history only from the 7b30847 commit
up, because you know that is where this problem started. Otherwise, it will start from the beginning
and will unnecessarily take longer.

Your history no longer contains a reference to that file. However, your reflog and a new set of refs that
Git added when you did the filter-branch under .git/refs/original still do, so you have to
remove them and then repack the database. You need to get rid of anything that has a pointer to those
old commits before you repack:

434

$ rm -Rf .git/refs/original

$ rm -Rf .git/logs/

$ git gc

Counting objects: 15, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (11/11), done.

Writing objects: 100% (15/15), done.

Total 15 (delta 1), reused 12 (delta 0)

Let’s see how much space you saved.

$ git count-objects -v

count: 11

size: 4904

in-pack: 15

packs: 1

size-pack: 8

prune-packable: 0

garbage: 0

size-garbage: 0

The packed repository size is down to 8K, which is much better than 5MB. You can see from the size
value that the big object is still in your loose objects, so it’s not gone; but it won’t be transferred on
a push or subsequent clone, which is what is important. If you really wanted to, you could remove the
object completely by running git prune with the --expire option:

$ git prune --expire now

$ git count-objects -v

count: 0

size: 0

in-pack: 15

packs: 1

size-pack: 8

prune-packable: 0

garbage: 0

size-garbage: 0

Environment Variables
Git always runs inside a bash shell, and uses a number of shell environment variables to determine
how it behaves. Occasionally, it comes in handy to know what these are, and how they can be used to
make Git behave the way you want it to. This isn’t an exhaustive list of all the environment variables
Git pays attention to, but we’ll cover the most useful.

Global Behavior
Some of Git’s general behavior as a computer program depends on environment variables.

435

GIT_EXEC_PATH determines where Git looks for its sub-programs (like git-commit, git-diff, and
others). You can check the current setting by running git --exec-path.

HOME isn’t usually considered customizable (too many other things depend on it), but it’s where Git
looks for the global configuration file. If you want a truly portable Git installation, complete with global
configuration, you can override HOME in the portable Git’s shell profile.

PREFIX is similar, but for the system-wide configuration. Git looks for this file at
$PREFIX/etc/gitconfig.

GIT_CONFIG_NOSYSTEM, if set, disables the use of the system-wide configuration file. This is useful if
your system config is interfering with your commands, but you don’t have access to change or
remove it.

GIT_PAGER controls the program used to display multi-page output on the command line. If this is
unset, PAGER will be used as a fallback.

GIT_EDITOR is the editor Git will launch when the user needs to edit some text (a commit message, for
example). If unset, EDITOR will be used.

Repository Locations
Git uses several environment variables to determine how it interfaces with the current repository.

GIT_DIR is the location of the .git folder. If this isn’t specified, Git walks up the directory tree until
it gets to ~ or /, looking for a .git directory at every step.

GIT_CEILING_DIRECTORIES controls the behavior of searching for a .git directory. If you access
directories that are slow to load (such as those on a tape drive, or across a slow network connection),
you may want to have Git stop trying earlier than it might otherwise, especially if Git is invoked when
building your shell prompt.

GIT_WORK_TREE is the location of the root of the working directory for a non-bare repository. If not
specified, the parent directory of $GIT_DIR is used.

GIT_INDEX_FILE is the path to the index file (non-bare repositories only).

GIT_OBJECT_DIRECTORY can be used to specify the location of the directory that usually resides at
.git/objects.

GIT_ALTERNATE_OBJECT_DIRECTORIES is a colon-separated list (formatted like
/dir/one:/dir/two:…) which tells Git where to check for objects if they aren’t in
GIT_OBJECT_DIRECTORY. If you happen to have a lot of projects with large files that have the exact
same contents, this can be used to avoid storing too many copies of them.

Pathspecs
A “pathspec” refers to how you specify paths to things in Git, including the use of wildcards. These
are used in the .gitignore file, but also on the command-line (git add *.c).

GIT_GLOB_PATHSPECS and GIT_NOGLOB_PATHSPECS control the default behavior of wildcards in

436

pathspecs. If GIT_GLOB_PATHSPECS is set to 1, wildcard characters act as wildcards (which is the
default); if GIT_NOGLOB_PATHSPECS is set to 1, wildcard characters only match themselves, meaning
something like *.c would only match a file named “*.c”, rather than any file whose name ends with
.c. You can override this in individual cases by starting the pathspec with :(glob) or :(literal), as
in :(glob)*.c.

GIT_LITERAL_PATHSPECS disables both of the above behaviors; no wildcard characters will work,
and the override prefixes are disabled as well.

GIT_ICASE_PATHSPECS sets all pathspecs to work in a case-insensitive manner.

Committing
The final creation of a Git commit object is usually done by git-commit-tree, which uses these
environment variables as its primary source of information, falling back to configuration values only if
these aren’t present.

GIT_AUTHOR_NAME is the human-readable name in the “author” field.

GIT_AUTHOR_EMAIL is the email for the “author” field.

GIT_AUTHOR_DATE is the timestamp used for the “author” field.

GIT_COMMITTER_NAME sets the human name for the “committer” field.

GIT_COMMITTER_EMAIL is the email address for the “committer” field.

GIT_COMMITTER_DATE is used for the timestamp in the “committer” field.

EMAIL is the fallback email address in case the user.email configuration value isn’t set. If this
isn’t set, Git falls back to the system user and host names.

Networking
Git uses the curl library to do network operations over HTTP, so GIT_CURL_VERBOSE tells Git to emit
all the messages generated by that library. This is similar to doing curl -v on the command line.

GIT_SSL_NO_VERIFY tells Git not to verify SSL certificates. This can sometimes be necessary if
you’re using a self-signed certificate to serve Git repositories over HTTPS, or you’re in the middle of
setting up a Git server but haven’t installed a full certificate yet.

If the data rate of an HTTP operation is lower than GIT_HTTP_LOW_SPEED_LIMIT bytes per second for
longer than GIT_HTTP_LOW_SPEED_TIME seconds, Git will abort that operation. These values override
the http.lowSpeedLimit and http.lowSpeedTime configuration values.

GIT_HTTP_USER_AGENT sets the user-agent string used by Git when communicating over HTTP. The
default is a value like git/2.0.0.

Diffing and Merging
GIT_DIFF_OPTS is a bit of a misnomer. The only valid values are -u<n> or --unified=<n>, which
controls the number of context lines shown in a git diff command.

437

GIT_EXTERNAL_DIFF is used as an override for the diff.external configuration value. If it’s set,
Git will invoke this program when git diff is invoked.

GIT_DIFF_PATH_COUNTER and GIT_DIFF_PATH_TOTAL are useful from inside the program specified
by GIT_EXTERNAL_DIFF or diff.external. The former represents which file in a series is being
diffed (starting with 1), and the latter is the total number of files in the batch.

GIT_MERGE_VERBOSITY controls the output for the recursive merge strategy. The allowed values are
as follows:

• 0 outputs nothing, except possibly a single error message.
• 1 shows only conflicts.
• 2 also shows file changes.
• 3 shows when files are skipped because they haven’t changed.
• 4 shows all paths as they are processed.
• 5 and above show detailed debugging information.

The default value is 2.

Debugging
Want to really know what Git is up to? Git has a fairly complete set of traces embedded, and all you
need to do is turn them on. The possible values of these variables are as follows:

• “true”, “1”, or “2” – the trace category is written to stderr.
• An absolute path starting with / – the trace output will be written to that file.

GIT_TRACE controls general traces, which don’t fit into any specific category. This includes the
expansion of aliases, and delegation to other sub-programs.

$ GIT_TRACE=true git lga

20:12:49.877982 git.c:554 trace: exec: 'git-lga'

20:12:49.878369 run-command.c:341 trace: run_command: 'git-lga'

20:12:49.879529 git.c:282 trace: alias expansion: lga =>

'log' '--graph' '--pretty=oneline' '--abbrev-commit' '--decorate' '--

all'

20:12:49.879885 git.c:349 trace: built-in: git 'log' '--

graph' '--pretty=oneline' '--abbrev-commit' '--decorate' '--all'

20:12:49.899217 run-command.c:341 trace: run_command: 'less'

20:12:49.899675 run-command.c:192 trace: exec: 'less'

GIT_TRACE_PACK_ACCESS controls tracing of packfile access. The first field is the packfile being
accessed, the second is the offset within that file:

438

$ GIT_TRACE_PACK_ACCESS=true git status

20:10:12.081397 sha1_file.c:2088 .git/objects/pack/pack-

c3fa...291e.pack 12

20:10:12.081886 sha1_file.c:2088 .git/objects/pack/pack-

c3fa...291e.pack 34662

20:10:12.082115 sha1_file.c:2088 .git/objects/pack/pack-

c3fa...291e.pack 35175

[…]

20:10:12.087398 sha1_file.c:2088 .git/objects/pack/pack-

e80e...e3d2.pack 56914983

20:10:12.087419 sha1_file.c:2088 .git/objects/pack/pack-

e80e...e3d2.pack 14303666

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

GIT_TRACE_PACKET enables packet-level tracing for network operations.

$ GIT_TRACE_PACKET=true git ls-remote origin

20:15:14.867043 pkt-line.c:46 packet: git< #

service=git-upload-pack

20:15:14.867071 pkt-line.c:46 packet: git< 0000

20:15:14.867079 pkt-line.c:46 packet: git<

97b8860c071898d9e162678ea1035a8ced2f8b1f HEAD\0multi_ack thin-pack side-

band side-band-64k ofs-delta shallow no-progress include-tag

multi_ack_detailed no-done symref=HEAD:refs/heads/master agent=git/2.0.4

20:15:14.867088 pkt-line.c:46 packet: git<

0f20ae29889d61f2e93ae00fd34f1cdb53285702 refs/heads/ab/add-interactive-

show-diff-func-name

20:15:14.867094 pkt-line.c:46 packet: git<

36dc827bc9d17f80ed4f326de21247a5d1341fbc refs/heads/ah/doc-gitk-config

[…]

GIT_TRACE_PERFORMANCE controls logging of performance data. The output shows how long each
particular git invocation takes.

439

$ GIT_TRACE_PERFORMANCE=true git gc

20:18:19.499676 trace.c:414 performance: 0.374835000 s: git

command: 'git' 'pack-refs' '--all' '--prune'

20:18:19.845585 trace.c:414 performance: 0.343020000 s: git

command: 'git' 'reflog' 'expire' '--all'

Counting objects: 170994, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (43413/43413), done.

Writing objects: 100% (170994/170994), done.

Total 170994 (delta 126176), reused 170524 (delta 125706)

20:18:23.567927 trace.c:414 performance: 3.715349000 s: git

command: 'git' 'pack-objects' '--keep-true-parents' '--honor-pack-keep'

'--non-empty' '--all' '--reflog' '--unpack-unreachable=2.weeks.ago' '--

local' '--delta-base-offset' '.git/objects/pack/.tmp-49190-pack'

20:18:23.584728 trace.c:414 performance: 0.000910000 s: git

command: 'git' 'prune-packed'

20:18:23.605218 trace.c:414 performance: 0.017972000 s: git

command: 'git' 'update-server-info'

20:18:23.606342 trace.c:414 performance: 3.756312000 s: git

command: 'git' 'repack' '-d' '-l' '-A' '--unpack-

unreachable=2.weeks.ago'

Checking connectivity: 170994, done.

20:18:25.225424 trace.c:414 performance: 1.616423000 s: git

command: 'git' 'prune' '--expire' '2.weeks.ago'

20:18:25.232403 trace.c:414 performance: 0.001051000 s: git

command: 'git' 'rerere' 'gc'

20:18:25.233159 trace.c:414 performance: 6.112217000 s: git

command: 'git' 'gc'

GIT_TRACE_SETUP shows information about what Git is discovering about the repository and
environment it’s interacting with.

$ GIT_TRACE_SETUP=true git status

20:19:47.086765 trace.c:315 setup: git_dir: .git

20:19:47.087184 trace.c:316 setup: worktree:

/Users/ben/src/git

20:19:47.087191 trace.c:317 setup: cwd: /Users/ben/src/git

20:19:47.087194 trace.c:318 setup: prefix: (null)

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

Miscellaneous
GIT_SSH, if specified, is a program that is invoked instead of ssh when Git tries to connect to an SSH
host. It is invoked like $GIT_SSH [username@]host [-p <port>] <command>. Note that this
isn’t the easiest way to customize how ssh is invoked; it won’t support extra command-line
parameters, so you’d have to write a wrapper script and set GIT_SSH to point to it. It’s probably
easier just to use the ~/.ssh/config file for that.

440

GIT_ASKPASS is an override for the core.askpass configuration value. This is the program invoked
whenever Git needs to ask the user for credentials, which can expect a text prompt as a command-line
argument, and should return the answer on stdout. (See Credential Storage for more on this
subsystem.)

GIT_NAMESPACE controls access to namespaced refs, and is equivalent to the --namespace flag. This
is mostly useful on the server side, where you may want to store multiple forks of a single repository in
one repository, only keeping the refs separate.

GIT_FLUSH can be used to force Git to use non-buffered I/O when writing incrementally to stdout. A
value of 1 causes Git to flush more often, a value of 0 causes all output to be buffered. The default
value (if this variable is not set) is to choose an appropriate buffering scheme depending on the
activity and the output mode.

GIT_REFLOG_ACTION lets you specify the descriptive text written to the reflog. Here’s an example:

$ GIT_REFLOG_ACTION="my action" git commit --allow-empty -m 'my message'

[master 9e3d55a] my message

$ git reflog -1

9e3d55a HEAD@{0}: my action: my message

Summary
You should have a pretty good understanding of what Git does in the background and, to some degree,
how it’s implemented. This chapter has covered a number of plumbing commands – commands that
are lower level and simpler than the porcelain commands you’ve learned about in the rest of the
book. Understanding how Git works at a lower level should make it easier to understand why it’s
doing what it’s doing and also to write your own tools and helping scripts to make your specific
workflow work for you.

Git as a content-addressable filesystem is a very powerful tool that you can easily use as more than
just a VCS. We hope you can use your newfound knowledge of Git internals to implement your own
cool application of this technology and feel more comfortable using Git in more advanced ways.

441

附錄 A: Git in Other Environments
If you read through the whole book, you’ve learned a lot about how to use Git at the command line.
You can work with local files, connect your repository to others over a network, and work effectively
with others. But the story doesn’t end there; Git is usually used as part of a larger ecosystem, and the
terminal isn’t always the best way to work with it. Now we’ll take a look at some of the other kinds
of environments where Git can be useful, and how other applications (including yours) work alongside
Git.

Graphical Interfaces
 Git’s native environment is in the terminal. New features show up there first, and only at the

command line is the full power of Git completely at your disposal. But plain text isn’t the best choice
for all tasks; sometimes a visual representation is what you need, and some users are much more
comfortable with a point-and-click interface.

It’s important to note that different interfaces are tailored for different workflows. Some clients
expose only a carefully curated subset of Git functionality, in order to support a specific way of
working that the author considers effective. When viewed in this light, none of these tools can be
called “better” than any of the others, they’re simply more fit for their intended purpose. Also note
that there’s nothing these graphical clients can do that the command-line client can’t; the
command-line is still where you’ll have the most power and control when working with your
repositories.

gitk and git-gui
 When you install Git, you also get its visual tools, gitk and git-gui.

gitk is a graphical history viewer. Think of it like a powerful GUI shell over git log and git grep.
This is the tool to use when you’re trying to find something that happened in the past, or visualize
your project’s history.

Gitk is easiest to invoke from the command-line. Just cd into a Git repository, and type:

$ gitk [git log options]

Gitk accepts many command-line options, most of which are passed through to the underlying git
log action. Probably one of the most useful is the --all flag, which tells gitk to show commits
reachable from any ref, not just HEAD. Gitk’s interface looks like this:

442

圖表 152. The gitk history viewer.

On the top is something that looks a bit like the output of git log --graph; each dot represents a
commit, the lines represent parent relationships, and refs are shown as colored boxes. The yellow dot
represents HEAD, and the red dot represents changes that are yet to become a commit. At the bottom
is a view of the selected commit; the comments and patch on the left, and a summary view on the
right. In between is a collection of controls used for searching history.

git-gui, on the other hand, is primarily a tool for crafting commits. It, too, is easiest to invoke from
the command line:

$ git gui

And it looks something like this:

443

圖表 153. The git-gui commit tool.

On the left is the index; unstaged changes are on top, staged changes on the bottom. You can move
entire files between the two states by clicking on their icons, or you can select a file for viewing by
clicking on its name.

At top right is the diff view, which shows the changes for the currently-selected file. You can stage
individual hunks (or individual lines) by right-clicking in this area.

At the bottom right is the message and action area. Type your message into the text box and click
“Commit” to do something similar to git commit. You can also choose to amend the last commit
by choosing the “Amend” radio button, which will update the “Staged Changes” area with the
contents of the last commit. Then you can simply stage or unstage some changes, alter the commit
message, and click “Commit” again to replace the old commit with a new one.

gitk and git-gui are examples of task-oriented tools. Each of them is tailored for a specific purpose
(viewing history and creating commits, respectively), and omit the features not necessary for that task.

GitHub for Mac and Windows
 GitHub has created two workflow-oriented Git clients: one for Windows, and one for Mac. These

clients are a good example of workflow-oriented tools – rather than expose all of Git’s functionality,
they instead focus on a curated set of commonly-used features that work well together. They look like
this:

444

圖表 154. GitHub for Mac.

圖表 155. GitHub for Windows.

They are designed to look and work very much alike, so we’ll treat them like a single product in this
chapter. We won’t be doing a detailed rundown of these tools (they have their own documentation),
but a quick tour of the “changes” view (which is where you’ll spend most of your time) is in order.

• On the left is the list of repositories the client is tracking; you can add a repository (either by
cloning or attaching locally) by clicking the “+” icon at the top of this area.

• In the center is a commit-input area, which lets you input a commit message, and select which
files should be included. (On Windows, the commit history is displayed directly below this; on
Mac, it’s on a separate tab.)

445

• On the right is a diff view, which shows what’s changed in your working directory, or which
changes were included in the selected commit.

• The last thing to notice is the “Sync” button at the top-right, which is the primary way you
interact over the network.

筆記
You don’t need a GitHub account to use these tools. While they’re designed to
highlight GitHub’s service and recommended workflow, they will happily work with
any repository, and do network operations with any Git host.

Installation

GitHub for Windows can be downloaded from https://windows.github.com, and GitHub for Mac from
https://mac.github.com. When the applications are first run, they walk you through all the first-time
Git setup, such as configuring your name and email address, and both set up sane defaults for many
common configuration options, such as credential caches and CRLF behavior.

Both are “evergreen” – updates are downloaded and installed in the background while the
applications are open. This helpfully includes a bundled version of Git, which means you probably
won’t have to worry about manually updating it again. On Windows, the client includes a shortcut to
launch Powershell with Posh-git, which we’ll talk more about later in this chapter.

The next step is to give the tool some repositories to work with. The client shows you a list of the
repositories you have access to on GitHub, and can clone them in one step. If you already have a local
repository, just drag its directory from the Finder or Windows Explorer into the GitHub client window,
and it will be included in the list of repositories on the left.

Recommended Workflow

Once it’s installed and configured, you can use the GitHub client for many common Git tasks. The
intended workflow for this tool is sometimes called the “GitHub Flow.” We cover this in more detail
in GitHub 流程, but the general gist is that (a) you’ll be committing to a branch, and (b) you’ll be
syncing up with a remote repository fairly regularly.

Branch management is one of the areas where the two tools diverge. On Mac, there’s a button at the
top of the window for creating a new branch:

圖表 156. “Create Branch” button on Mac.

On Windows, this is done by typing the new branch’s name in the branch-switching widget:

446

https://windows.github.com
https://mac.github.com

圖表 157. Creating a branch on Windows.

Once your branch is created, making new commits is fairly straightforward. Make some changes in
your working directory, and when you switch to the GitHub client window, it will show you which files
changed. Enter a commit message, select the files you’d like to include, and click the “Commit”
button (ctrl-enter or ⌘-enter).

The main way you interact with other repositories over the network is through the “Sync” feature.
Git internally has separate operations for pushing, fetching, merging, and rebasing, but the GitHub
clients collapse all of these into one multi-step feature. Here’s what happens when you click the Sync
button:

1. git pull --rebase. If this fails because of a merge conflict, fall back to git pull --no
-rebase.

2. git push.

This is the most common sequence of network commands when working in this style, so squashing
them into one command saves a lot of time.

Summary

These tools are very well-suited for the workflow they’re designed for. Developers and non-
developers alike can be collaborating on a project within minutes, and many of the best practices for
this kind of workflow are baked into the tools. However, if your workflow is different, or you want more
control over how and when network operations are done, we recommend you use another client or
the command line.

Other GUIs
There are a number of other graphical Git clients, and they run the gamut from specialized, single-
purpose tools all the way to apps that try to expose everything Git can do. The official Git website has
a curated list of the most popular clients at http://git-scm.com/downloads/guis. A more
comprehensive list is available on the Git wiki site, at https://git.wiki.kernel.org/index.php/
Interfaces,_frontends,_and_tools#Graphical_Interfaces.

Git in Visual Studio
 Starting with Visual Studio 2013 Update 1, Visual Studio users have a Git client built directly into their
IDE. Visual Studio has had source-control integration features for quite some time, but they were
oriented towards centralized, file-locking systems, and Git was not a good match for this workflow.
Visual Studio 2013’s Git support has been separated from this older feature, and the result is a much
better fit between Studio and Git.

447

http://git-scm.com/downloads/guis
https://git.wiki.kernel.org/index.php/Interfaces,_frontends,_and_tools#Graphical_Interfaces
https://git.wiki.kernel.org/index.php/Interfaces,_frontends,_and_tools#Graphical_Interfaces

To locate the feature, open a project that’s controlled by Git (or just git init an existing project),
and select View > Team Explorer from the menu. You’ll see the "Connect" view, which looks a bit like
this:

圖表 158. Connecting to a Git repository from Team Explorer.

Visual Studio remembers all of the projects you’ve opened that are Git-controlled, and they’re
available in the list at the bottom. If you don’t see the one you want there, click the "Add" link and
type in the path to the working directory. Double clicking on one of the local Git repositories leads you
to the Home view, which looks like The "Home" view for a Git repository in Visual Studio.. This is a hub
for performing Git actions; when you’re writing code, you’ll probably spend most of your time in
the "Changes" view, but when it comes time to pull down changes made by your teammates, you’ll
use the "Unsynced Commits" and "Branches" views.

圖表 159. The "Home" view for a Git repository in Visual Studio.

Visual Studio now has a powerful task-focused UI for Git. It includes a linear history view, a diff viewer,
remote commands, and many other capabilities. For complete documentation of this feature (which
doesn’t fit here), go to http://msdn.microsoft.com/en-us/library/hh850437.aspx.

Git in Eclipse
 Eclipse ships with a plugin called Egit, which provides a fairly-complete interface to Git operations.

448

http://msdn.microsoft.com/en-us/library/hh850437.aspx

It’s accessed by switching to the Git Perspective (Window > Open Perspective > Other…, and select
"Git").

圖表 160. Eclipse’s EGit environment.

EGit comes with plenty of great documentation, which you can find by going to Help > Help Contents,
and choosing the "EGit Documentation" node from the contents listing.

Git in Bash
 If you’re a Bash user, you can tap into some of your shell’s features to make your experience with

Git a lot friendlier. Git actually ships with plugins for several shells, but it’s not turned on by default.

First, you need to get a copy of the contrib/completion/git-completion.bash file out of the Git
source code. Copy it somewhere handy, like your home directory, and add this to your .bashrc:

. ~/git-completion.bash

Once that’s done, change your directory to a git repository, and type:

$ git chec<tab>

…and Bash will auto-complete to git checkout. This works with all of Git’s subcommands,
command-line parameters, and remotes and ref names where appropriate.

It’s also useful to customize your prompt to show information about the current directory’s Git

449

repository. This can be as simple or complex as you want, but there are generally a few key pieces of
information that most people want, like the current branch, and the status of the working directory. To
add these to your prompt, just copy the contrib/completion/git-prompt.sh file from Git’s
source repository to your home directory, add something like this to your .bashrc:

. ~/git-prompt.sh

export GIT_PS1_SHOWDIRTYSTATE=1

export PS1='\w$(__git_ps1 " (%s)")\$ '

The \w means print the current working directory, the \$ prints the $ part of the prompt, and
__git_ps1 " (%s)" calls the function provided by git-prompt.sh with a formatting argument.
Now your bash prompt will look like this when you’re anywhere inside a Git-controlled project:

圖表 161. Customized bash prompt.

Both of these scripts come with helpful documentation; take a look at the contents of git-
completion.bash and git-prompt.sh for more information.

Git in Zsh
 Zsh also ships with a tab-completion library for Git. To use it, simply run autoload -Uz compinit

&& compinit in your .zshrc. Zsh’s interface is a bit more powerful than Bash’s:

$ git che<tab>

check-attr -- display gitattributes information

check-ref-format -- ensure that a reference name is well formed

checkout -- checkout branch or paths to working tree

checkout-index -- copy files from index to working directory

cherry -- find commits not merged upstream

cherry-pick -- apply changes introduced by some existing commits

Ambiguous tab-completions aren’t just listed; they have helpful descriptions, and you can
graphically navigate the list by repeatedly hitting tab. This works with Git commands, their arguments,
and names of things inside the repository (like refs and remotes), as well as filenames and all the other
things Zsh knows how to tab-complete.

Zsh ships with a framework for getting information from version control systems, called vcs_info. To
include the branch name in the prompt on the right side, add these lines to your ~/.zshrc file:

450

autoload -Uz vcs_info

precmd_vcs_info() { vcs_info }

precmd_functions+=(precmd_vcs_info)

setopt prompt_subst

RPROMPT=\$vcs_info_msg_0_

PROMPT=\$vcs_info_msg_0_'%# '

zstyle ':vcs_info:git:*' formats '%b'

This results in a display of the current branch on the right-hand side of the terminal window, whenever
your shell is inside a Git repository. (The left side is supported as well, of course; just uncomment the
assignment to PROMPT.) It looks a bit like this:

圖表 162. Customized zsh prompt.

For more information on vcs_info, check out its documentation in the zshcontrib(1) manual page,
or online at http://zsh.sourceforge.net/Doc/Release/User-Contributions.html#Version-Control-
Information.

Instead of vcs_info, you might prefer the prompt customization script that ships with Git, called git-
prompt.sh; see http://git-prompt.sh for details. git-prompt.sh is compatible with both Bash and
Zsh.

Zsh is powerful enough that there are entire frameworks dedicated to making it better. One of them is
called "oh-my-zsh", and it can be found at https://github.com/robbyrussell/oh-my-zsh. oh-my-zsh’s
plugin system comes with powerful git tab-completion, and it has a variety of prompt "themes", many
of which display version-control data. An example of an oh-my-zsh theme. is just one example of what
can be done with this system.

451

http://zsh.sourceforge.net/Doc/Release/User-Contributions.html#Version-Control-Information
http://zsh.sourceforge.net/Doc/Release/User-Contributions.html#Version-Control-Information
http://git-prompt.sh
https://github.com/robbyrussell/oh-my-zsh

圖表 163. An example of an oh-my-zsh theme.

Git in Powershell
 The standard command-line terminal on Windows (cmd.exe) isn’t really capable of a customized

Git experience, but if you’re using Powershell, you’re in luck. A package called Posh-Git
(https://github.com/dahlbyk/posh-git) provides powerful tab-completion facilities, as well as an
enhanced prompt to help you stay on top of your repository status. It looks like this:

圖表 164. Powershell with Posh-git.

If you’ve installed GitHub for Windows, Posh-Git is included by default, and all you have to do is add
these lines to your profile.ps1 (which is usually located in
C:\Users\<username>\Documents\WindowsPowerShell):

. (Resolve-Path "$env:LOCALAPPDATA\GitHub\shell.ps1")

. $env:github_posh_git\profile.example.ps1

If you’re not a GitHub for Windows user, just download a Posh-Git release from (https://github.com/
dahlbyk/posh-git), and uncompress it to the WindowsPowershell directory. Then open a Powershell
prompt as the administrator, and do this:

452

https://github.com/dahlbyk/posh-git
https://github.com/dahlbyk/posh-git
https://github.com/dahlbyk/posh-git

> Set-ExecutionPolicy RemoteSigned -Scope CurrentUser -Confirm

> cd ~\Documents\WindowsPowerShell\posh-git

> .\install.ps1

This will add the proper line to your profile.ps1 file, and posh-git will be active the next time you
open your prompt.

Summary
You’ve learned how to harness Git’s power from inside the tools that you use during your everyday
work, and also how to access Git repositories from your own programs.

453

附錄 B: Embedding Git in your Applications
If your application is for developers, chances are good that it could benefit from integration with
source control. Even non-developer applications, such as document editors, could potentially benefit
from version-control features, and Git’s model works very well for many different scenarios.

If you need to integrate Git with your application, you have essentially three choices: spawning a shell
and using the Git command-line tool; Libgit2; and JGit.

Command-line Git
One option is to spawn a shell process and use the Git command-line tool to do the work. This has the
benefit of being canonical, and all of Git’s features are supported. This also happens to be fairly easy,
as most runtime environments have a relatively simple facility for invoking a process with command-
line arguments. However, this approach does have some downsides.

One is that all the output is in plain text. This means that you’ll have to parse Git’s occasionally-
changing output format to read progress and result information, which can be inefficient and error-
prone.

Another is the lack of error recovery. If a repository is corrupted somehow, or the user has a
malformed configuration value, Git will simply refuse to perform many operations.

Yet another is process management. Git requires you to maintain a shell environment on a separate
process, which can add unwanted complexity. Trying to coordinate many of these processes
(especially when potentially accessing the same repository from several processes) can be quite a
challenge.

Libgit2
 Another option at your disposal is to use Libgit2. Libgit2 is a dependency-free implementation of Git,

with a focus on having a nice API for use within other programs. You can find it at
http://libgit2.github.com.

First, let’s take a look at what the C API looks like. Here’s a whirlwind tour:

454

http://libgit2.github.com

// Open a repository

git_repository *repo;

int error = git_repository_open(&repo, "/path/to/repository");

// Dereference HEAD to a commit

git_object *head_commit;

error = git_revparse_single(&head_commit, repo, "HEAD^{commit}");

git_commit *commit = (git_commit*)head_commit;

// Print some of the commit's properties

printf("%s", git_commit_message(commit));

const git_signature *author = git_commit_author(commit);

printf("%s <%s>\n", author->name, author->email);

const git_oid *tree_id = git_commit_tree_id(commit);

// Cleanup

git_commit_free(commit);

git_repository_free(repo);

The first couple of lines open a Git repository. The git_repository type represents a handle to a
repository with a cache in memory. This is the simplest method, for when you know the exact path to a
repository’s working directory or .git folder. There’s also the git_repository_open_ext which
includes options for searching, git_clone and friends for making a local clone of a remote repository,
and git_repository_init for creating an entirely new repository.

The second chunk of code uses rev-parse syntax (see Branch References for more on this) to get the
commit that HEAD eventually points to. The type returned is a git_object pointer, which represents
something that exists in the Git object database for a repository. git_object is actually a “parent”
type for several different kinds of objects; the memory layout for each of the “child” types is the
same as for git_object, so you can safely cast to the right one. In this case, git_object_type
(commit) would return GIT_OBJ_COMMIT, so it’s safe to cast to a git_commit pointer.

The next chunk shows how to access the commit’s properties. The last line here uses a git_oid
type; this is Libgit2’s representation for a SHA-1 hash.

From this sample, a couple of patterns have started to emerge:

• If you declare a pointer and pass a reference to it into a Libgit2 call, that call will probably return
an integer error code. A 0 value indicates success; anything less is an error.

• If Libgit2 populates a pointer for you, you’re responsible for freeing it.
• If Libgit2 returns a const pointer from a call, you don’t have to free it, but it will become invalid

when the object it belongs to is freed.
• Writing C is a bit painful.

 That last one means it isn’t very probable that you’ll be writing C when using Libgit2. Fortunately,
there are a number of language-specific bindings available that make it fairly easy to work with Git
repositories from your specific language and environment. Let’s take a look at the above example
written using the Ruby bindings for Libgit2, which are named Rugged, and can be found at
https://github.com/libgit2/rugged.

455

https://github.com/libgit2/rugged

repo = Rugged::Repository.new('path/to/repository')

commit = repo.head.target

puts commit.message

puts "#{commit.author[:name]} <#{commit.author[:email]}>"

tree = commit.tree

As you can see, the code is much less cluttered. Firstly, Rugged uses exceptions; it can raise things like
ConfigError or ObjectError to signal error conditions. Secondly, there’s no explicit freeing of
resources, since Ruby is garbage-collected. Let’s take a look at a slightly more complicated example:
crafting a commit from scratch

blob_id = repo.write("Blob contents", :blob) ①

index = repo.index

index.read_tree(repo.head.target.tree)

index.add(:path => 'newfile.txt', :oid => blob_id) ②

sig = {

 :email => "bob@example.com",

 :name => "Bob User",

 :time => Time.now,

}

commit_id = Rugged::Commit.create(repo,

 :tree => index.write_tree(repo), ③
 :author => sig,

 :committer => sig, ④
 :message => "Add newfile.txt", ⑤
 :parents => repo.empty? ? [] : [repo.head.target].compact, ⑥
 :update_ref => 'HEAD', ⑦
)

commit = repo.lookup(commit_id) ⑧

① Create a new blob, which contains the contents of a new file.
② Populate the index with the head commit’s tree, and add the new file at the path newfile.txt.

③ This creates a new tree in the ODB, and uses it for the new commit.
④ We use the same signature for both the author and committer fields.
⑤ The commit message.
⑥ When creating a commit, you have to specify the new commit’s parents. This uses the tip of HEAD

for the single parent.
⑦ Rugged (and Libgit2) can optionally update a reference when making a commit.
⑧ The return value is the SHA-1 hash of a new commit object, which you can then use to get a Commit

object.

The Ruby code is nice and clean, but since Libgit2 is doing the heavy lifting, this code will run pretty
fast, too. If you’re not a rubyist, we touch on some other bindings in Other Bindings.

456

Advanced Functionality
Libgit2 has a couple of capabilities that are outside the scope of core Git. One example is pluggability:
Libgit2 allows you to provide custom “backends” for several types of operation, so you can store
things in a different way than stock Git does. Libgit2 allows custom backends for configuration, ref
storage, and the object database, among other things.

Let’s take a look at how this works. The code below is borrowed from the set of backend examples
provided by the Libgit2 team (which can be found at https://github.com/libgit2/libgit2-backends).
Here’s how a custom backend for the object database is set up:

git_odb *odb;

int error = git_odb_new(&odb); ①

git_odb_backend *my_backend;

error = git_odb_backend_mine(&my_backend, /*…*/); ②

error = git_odb_add_backend(odb, my_backend, 1); ③

git_repository *repo;

error = git_repository_open(&repo, "some-path");

error = git_repository_set_odb(odb); ④

(Note that errors are captured, but not handled. We hope your code is better than ours.)

① Initialize an empty object database (ODB) “frontend,” which will act as a container for the
“backends” which are the ones doing the real work.

② Initialize a custom ODB backend.
③ Add the backend to the frontend.
④ Open a repository, and set it to use our ODB to look up objects.

But what is this git_odb_backend_mine thing? Well, that’s the constructor for your own ODB
implementation, and you can do whatever you want in there, so long as you fill in the
git_odb_backend structure properly. Here’s what it could look like:

457

https://github.com/libgit2/libgit2-backends

typedef struct {

 git_odb_backend parent;

 // Some other stuff

 void *custom_context;

} my_backend_struct;

int git_odb_backend_mine(git_odb_backend **backend_out, /*…*/)

{

 my_backend_struct *backend;

 backend = calloc(1, sizeof (my_backend_struct));

 backend->custom_context = …;

 backend->parent.read = &my_backend__read;

 backend->parent.read_prefix = &my_backend__read_prefix;

 backend->parent.read_header = &my_backend__read_header;

 // …

 *backend_out = (git_odb_backend *) backend;

 return GIT_SUCCESS;

}

The subtlest constraint here is that my_backend_struct's first member must be a git_odb_backend
structure; this ensures that the memory layout is what the Libgit2 code expects it to be. The rest of it is
arbitrary; this structure can be as large or small as you need it to be.

The initialization function allocates some memory for the structure, sets up the custom context, and
then fills in the members of the parent structure that it supports. Take a look at the
include/git2/sys/odb_backend.h file in the Libgit2 source for a complete set of call signatures;
your particular use case will help determine which of these you’ll want to support.

Other Bindings
Libgit2 has bindings for many languages. Here we show a small example using a few of the more
complete bindings packages as of this writing; libraries exist for many other languages, including C++,
Go, Node.js, Erlang, and the JVM, all in various stages of maturity. The official collection of bindings
can be found by browsing the repositories at https://github.com/libgit2. The code we’ll write will
return the commit message from the commit eventually pointed to by HEAD (sort of like git log -1).

LibGit2Sharp

 If you’re writing a .NET or Mono application, LibGit2Sharp (https://github.com/libgit2/libgit2sharp)
is what you’re looking for. The bindings are written in C#, and great care has been taken to wrap the
raw Libgit2 calls with native-feeling CLR APIs. Here’s what our example program looks like:

new Repository(@"C:\path\to\repo").Head.Tip.Message;

458

https://github.com/libgit2
https://github.com/libgit2/libgit2sharp

For desktop Windows applications, there’s even a NuGet package that will help you get started
quickly.

objective-git

 If your application is running on an Apple platform, you’re likely using Objective-C as your
implementation language. Objective-Git (https://github.com/libgit2/objective-git) is the name of the
Libgit2 bindings for that environment. The example program looks like this:

GTRepository *repo =

 [[GTRepository alloc] initWithURL:[NSURL fileURLWithPath:

@"/path/to/repo"] error:NULL];

NSString *msg = [[[repo headReferenceWithError:NULL] resolvedTarget]

message];

Objective-git is fully interoperable with Swift, so don’t fear if you’ve left Objective-C behind.

pygit2

 The bindings for Libgit2 in Python are called Pygit2, and can be found at http://www.pygit2.org/. Our
example program:

pygit2.Repository("/path/to/repo") # open repository

 .head # get the current branch

 .peel(pygit2.Commit) # walk down to the commit

 .message # read the message

Further Reading
Of course, a full treatment of Libgit2’s capabilities is outside the scope of this book. If you want more
information on Libgit2 itself, there’s API documentation at https://libgit2.github.com/libgit2, and a
set of guides at https://libgit2.github.com/docs. For the other bindings, check the bundled README
and tests; there are often small tutorials and pointers to further reading there.

JGit
 If you want to use Git from within a Java program, there is a fully featured Git library called JGit. JGit

is a relatively full-featured implementation of Git written natively in Java, and is widely used in the
Java community. The JGit project is under the Eclipse umbrella, and its home can be found at
http://www.eclipse.org/jgit.

Getting Set Up
There are a number of ways to connect your project with JGit and start writing code against it.
Probably the easiest is to use Maven – the integration is accomplished by adding the following snippet
to the <dependencies> tag in your pom.xml file:

459

https://github.com/libgit2/objective-git
http://www.pygit2.org/
https://libgit2.github.com/libgit2
https://libgit2.github.com/docs
http://www.eclipse.org/jgit

<dependency>

 <groupId>org.eclipse.jgit</groupId>

 <artifactId>org.eclipse.jgit</artifactId>

 <version>3.5.0.201409260305-r</version>

</dependency>

The version will most likely have advanced by the time you read this; check
http://mvnrepository.com/artifact/org.eclipse.jgit/org.eclipse.jgit for updated repository information.
Once this step is done, Maven will automatically acquire and use the JGit libraries that you’ll need.

If you would rather manage the binary dependencies yourself, pre-built JGit binaries are available
from http://www.eclipse.org/jgit/download. You can build them into your project by running a
command like this:

javac -cp .:org.eclipse.jgit-3.5.0.201409260305-r.jar App.java

java -cp .:org.eclipse.jgit-3.5.0.201409260305-r.jar App

Plumbing
JGit has two basic levels of API: plumbing and porcelain. The terminology for these comes from Git
itself, and JGit is divided into roughly the same kinds of areas: porcelain APIs are a friendly front-end
for common user-level actions (the sorts of things a normal user would use the Git command-line tool
for), while the plumbing APIs are for interacting with low-level repository objects directly.

The starting point for most JGit sessions is the Repository class, and the first thing you’ll want to
do is create an instance of it. For a filesystem-based repository (yes, JGit allows for other storage
models), this is accomplished using FileRepositoryBuilder:

// Create a new repository

Repository newlyCreatedRepo = FileRepositoryBuilder.create(

 new File("/tmp/new_repo/.git"));

newlyCreatedRepo.create();

// Open an existing repository

Repository existingRepo = new FileRepositoryBuilder()

 .setGitDir(new File("my_repo/.git"))

 .build();

The builder has a fluent API for providing all the things it needs to find a Git repository, whether or not
your program knows exactly where it’s located. It can use environment variables
(.readEnvironment()), start from a place in the working directory and search (.setWorkTree
(…).findGitDir()), or just open a known .git directory as above.

Once you have a Repository instance, you can do all sorts of things with it. Here’s a quick sampling:

460

http://mvnrepository.com/artifact/org.eclipse.jgit/org.eclipse.jgit
http://www.eclipse.org/jgit/download

// Get a reference

Ref master = repo.getRef("master");

// Get the object the reference points to

ObjectId masterTip = master.getObjectId();

// Rev-parse

ObjectId obj = repo.resolve("HEAD^{tree}");

// Load raw object contents

ObjectLoader loader = repo.open(masterTip);

loader.copyTo(System.out);

// Create a branch

RefUpdate createBranch1 = repo.updateRef("refs/heads/branch1");

createBranch1.setNewObjectId(masterTip);

createBranch1.update();

// Delete a branch

RefUpdate deleteBranch1 = repo.updateRef("refs/heads/branch1");

deleteBranch1.setForceUpdate(true);

deleteBranch1.delete();

// Config

Config cfg = repo.getConfig();

String name = cfg.getString("user", null, "name");

There’s quite a bit going on here, so let’s go through it one section at a time.

The first line gets a pointer to the master reference. JGit automatically grabs the actual master ref,
which lives at refs/heads/master, and returns an object that lets you fetch information about the
reference. You can get the name (.getName()), and either the target object of a direct reference
(.getObjectId()) or the reference pointed to by a symbolic ref (.getTarget()). Ref objects are also
used to represent tag refs and objects, so you can ask if the tag is “peeled,” meaning that it points to
the final target of a (potentially long) string of tag objects.

The second line gets the target of the master reference, which is returned as an ObjectId instance.
ObjectId represents the SHA-1 hash of an object, which might or might not exist in Git’s object
database. The third line is similar, but shows how JGit handles the rev-parse syntax (for more on this,
see Branch References); you can pass any object specifier that Git understands, and JGit will return
either a valid ObjectId for that object, or null.

The next two lines show how to load the raw contents of an object. In this example, we call
ObjectLoader.copyTo() to stream the contents of the object directly to stdout, but ObjectLoader
also has methods to read the type and size of an object, as well as return it as a byte array. For large
objects (where .isLarge() returns true), you can call .openStream() to get an InputStream-like
object that can read the raw object data without pulling it all into memory at once.

The next few lines show what it takes to create a new branch. We create a RefUpdate instance,
configure some parameters, and call .update() to trigger the change. Directly following this is the
code to delete that same branch. Note that .setForceUpdate(true) is required for this to work;

461

otherwise the .delete() call will return REJECTED, and nothing will happen.

The last example shows how to fetch the user.name value from the Git configuration files. This Config
instance uses the repository we opened earlier for local configuration, but will automatically detect
the global and system configuration files and read values from them as well.

This is only a small sampling of the full plumbing API; there are many more methods and classes
available. Also not shown here is the way JGit handles errors, which is through the use of exceptions.
JGit APIs sometimes throw standard Java exceptions (such as IOException), but there are a host of
JGit-specific exception types that are provided as well (such as NoRemoteRepositoryException,
CorruptObjectException, and NoMergeBaseException).

Porcelain
The plumbing APIs are rather complete, but it can be cumbersome to string them together to achieve
common goals, like adding a file to the index, or making a new commit. JGit provides a higher-level set
of APIs to help out with this, and the entry point to these APIs is the Git class:

Repository repo;

// construct repo...

Git git = new Git(repo);

The Git class has a nice set of high-level builder-style methods that can be used to construct some
pretty complex behavior. Let’s take a look at an example – doing something like git ls-remote:

CredentialsProvider cp = new

UsernamePasswordCredentialsProvider("username", "p4ssw0rd");

Collection<Ref> remoteRefs = git.lsRemote()

 .setCredentialsProvider(cp)

 .setRemote("origin")

 .setTags(true)

 .setHeads(false)

 .call();

for (Ref ref : remoteRefs) {

 System.out.println(ref.getName() + " -> " +

ref.getObjectId().name());

}

This is a common pattern with the Git class; the methods return a command object that lets you chain
method calls to set parameters, which are executed when you call .call(). In this case, we’re
asking the origin remote for tags, but not heads. Also notice the use of a CredentialsProvider
object for authentication.

Many other commands are available through the Git class, including but not limited to add, blame,
commit, clean, push, rebase, revert, and reset.

Further Reading
This is only a small sampling of JGit’s full capabilities. If you’re interested and want to learn more,

462

here’s where to look for information and inspiration:

• The official JGit API documentation is available online at http://download.eclipse.org/jgit/docs/
latest/apidocs. These are standard Javadoc, so your favorite JVM IDE will be able to install them
locally, as well.

• The JGit Cookbook at https://github.com/centic9/jgit-cookbook has many examples of how to do
specific tasks with JGit.

• There are several good resources pointed out at http://stackoverflow.com/questions/6861881.

463

http://download.eclipse.org/jgit/docs/latest/apidocs
http://download.eclipse.org/jgit/docs/latest/apidocs
https://github.com/centic9/jgit-cookbook
http://stackoverflow.com/questions/6861881

附錄 C: Git Commands
Throughout the book we have introduced dozens of Git commands and have tried hard to introduce
them within something of a narrative, adding more commands to the story slowly. However, this
leaves us with examples of usage of the commands somewhat scattered throughout the whole book.

In this appendix, we’ll go through all the Git commands we addressed throughout the book, grouped
roughly by what they’re used for. We’ll talk about what each command very generally does and
then point out where in the book you can find us having used it.

Setup and Config
There are two commands that are used quite a lot, from the first invocations of Git to common every
day tweaking and referencing, the config and help commands.

git config
Git has a default way of doing hundreds of things. For a lot of these things, you can tell Git to default to
doing them a different way, or set your preferences. This involves everything from telling Git what your
name is to specific terminal color preferences or what editor you use. There are several files this
command will read from and write to so you can set values globally or down to specific repositories.

The git config command has been used in nearly every chapter of the book.

In 初次設定 Git we used it to specify our name, email address and editor preference before we even got
started using Git.

In Git Aliases we showed how you could use it to create shorthand commands that expand to long
option sequences so you don’t have to type them every time.

In 衍合 we used it to make --rebase the default when you run git pull.

In Credential Storage we used it to set up a default store for your HTTP passwords.

In Keyword Expansion we showed how to set up smudge and clean filters on content coming in and
out of Git.

Finally, basically the entirety of Git Configuration is dedicated to the command.

git help
The git help command is used to show you all the documentation shipped with Git about any
command. While we’re giving a rough overview of most of the more popular ones in this appendix,
for a full listing of all of the possible options and flags for every command, you can always run git
help <command>.

We introduced the git help command in 取得說明文件 and showed you how to use it to find more
information about the git shell in 設定伺服器.

464

Getting and Creating Projects
There are two ways to get a Git repository. One is to copy it from an existing repository on the network
or elsewhere and the other is to create a new one in an existing directory.

git init
To take a directory and turn it into a new Git repository so you can start version controlling it, you can
simply run git init.

We first introduce this in 取得一個 Git 倉儲, where we show creating a brand new repository to start
working with.

We talk briefly about how you can change the default branch from “master” in 遠端分支.

We use this command to create an empty bare repository for a server in 把 Bare Repository 放到伺服器
上.

Finally, we go through some of the details of what it actually does behind the scenes in Plumbing and
Porcelain.

git clone
The git clone command is actually something of a wrapper around several other commands. It
creates a new directory, goes into it and runs git init to make it an empty Git repository, adds a
remote (git remote add) to the URL that you pass it (by default named origin), runs a git fetch
from that remote repository and then checks out the latest commit into your working directory with
git checkout.

The git clone command is used in dozens of places throughout the book, but we’ll just list a few
interesting places.

It’s basically introduced and explained in 克隆現有的倉儲, where we go through a few examples.

In 在伺服器上佈署 Git we look at using the --bare option to create a copy of a Git repository with no
working directory.

In Bundling we use it to unbundle a bundled Git repository.

Finally, in Cloning a Project with Submodules we learn the --recursive option to make cloning a
repository with submodules a little simpler.

Though it’s used in many other places through the book, these are the ones that are somewhat
unique or where it is used in ways that are a little different.

Basic Snapshotting
For the basic workflow of staging content and committing it to your history, there are only a few basic
commands.

465

git add
The git add command adds content from the working directory into the staging area (or “index”)
for the next commit. When the git commit command is run, by default it only looks at this staging
area, so git add is used to craft what exactly you would like your next commit snapshot to look like.

This command is an incredibly important command in Git and is mentioned or used dozens of times in
this book. We’ll quickly cover some of the unique uses that can be found.

We first introduce and explain git add in detail in 追蹤新的檔案.

We mention how to use it to resolve merge conflicts in 合併衝突的基本解法.

We go over using it to interactively stage only specific parts of a modified file in Interactive Staging.

Finally, we emulate it at a low level in Tree Objects, so you can get an idea of what it’s doing behind
the scenes.

git status
The git status command will show you the different states of files in your working directory and
staging area. Which files are modified and unstaged and which are staged but not yet committed. In its
normal form, it also will show you some basic hints on how to move files between these stages.

We first cover status in 檢查你的檔案狀態, both in its basic and simplified forms. While we use it
throughout the book, pretty much everything you can do with the git status command is covered
there.

git diff
The git diff command is used when you want to see differences between any two trees. This could
be the difference between your working environment and your staging area (git diff by itself),
between your staging area and your last commit (git diff --staged), or between two commits
(git diff master branchB).

We first look at the basic uses of git diff in 檢視已預存及未預存的檔案, where we show how to see
what changes are staged and which are not yet staged.

We use it to look for possible whitespace issues before committing with the --check option in 提交指
南.

We see how to check the differences between branches more effectively with the git diff A...B
syntax in 決定要提到哪些資訊.

We use it to filter out whitespace differences with -b and how to compare different stages of conflicted
files with --theirs, --ours and --base in Advanced Merging.

Finally, we use it to effectively compare submodule changes with --submodule in Starting with
Submodules.

466

git difftool
The git difftool command simply launches an external tool to show you the difference between
two trees in case you want to use something other than the built in git diff command.

We only briefly mention this in 檢視已預存及未預存的檔案.

git commit
The git commit command takes all the file contents that have been staged with git add and
records a new permanent snapshot in the database and then moves the branch pointer on the current
branch up to it.

We first cover the basics of committing in 提交你的修改. There we also demonstrate how to use the -a
flag to skip the git add step in daily workflows and how to use the -m flag to pass a commit message
in on the command line instead of firing up an editor.

In 復原 we cover using the --amend option to redo the most recent commit.

In 簡述分支, we go into much more detail about what git commit does and why it does it like that.

We looked at how to sign commits cryptographically with the -S flag in Signing Commits.

Finally, we take a look at what the git commit command does in the background and how it’s
actually implemented in Commit Objects.

git reset
The git reset command is primarily used to undo things, as you can possibly tell by the verb. It
moves around the HEAD pointer and optionally changes the index or staging area and can also
optionally change the working directory if you use --hard. This final option makes it possible for this
command to lose your work if used incorrectly, so make sure you understand it before using it.

We first effectively cover the simplest use of git reset in 將已預存的檔案移出預存區, where we use it
to unstage a file we had run git add on.

We then cover it in quite some detail in Reset Demystified, which is entirely devoted to explaining this
command.

We use git reset --hard to abort a merge in Aborting a Merge, where we also use git merge
--abort, which is a bit of a wrapper for the git reset command.

git rm
The git rm command is used to remove files from the staging area and working directory for Git. It is
similar to git add in that it stages a removal of a file for the next commit.

We cover the git rm command in some detail in 移除檔案, including recursively removing files and
only removing files from the staging area but leaving them in the working directory with --cached.

The only other differing use of git rm in the book is in Removing Objects where we briefly use and
explain the --ignore-unmatch when running git filter-branch, which simply makes it not error

467

out when the file we are trying to remove doesn’t exist. This can be useful for scripting purposes.

git mv
The git mv command is a thin convenience command to move a file and then run git add on the
new file and git rm on the old file.

We only briefly mention this command in 移動檔案.

git clean
The git clean command is used to remove unwanted files from your working directory. This could
include removing temporary build artifacts or merge conflict files.

We cover many of the options and scenarios in which you might used the clean command in Cleaning
your Working Directory.

Branching and Merging
There are just a handful of commands that implement most of the branching and merging
functionality in Git.

git branch
The git branch command is actually something of a branch management tool. It can list the
branches you have, create a new branch, delete branches and rename branches.

Most of 使用 Git 分支 is dedicated to the branch command and it’s used throughout the entire
chapter. We first introduce it in 建立一個新的分支 and we go through most of its other features (listing
and deleting) in 分支管理.

In Tracking Branches we use the git branch -u option to set up a tracking branch.

Finally, we go through some of what it does in the background in Git References.

git checkout
The git checkout command is used to switch branches and check content out into your working
directory.

We first encounter the command in 在分支之間切換 along with the git branch command.

We see how to use it to start tracking branches with the --track flag in Tracking Branches.

We use it to reintroduce file conflicts with --conflict=diff3 in Checking Out Conflicts.

We go into closer detail on its relationship with git reset in Reset Demystified.

Finally, we go into some implementation detail in The HEAD.

468

git merge
The git merge tool is used to merge one or more branches into the branch you have checked out. It
will then advance the current branch to the result of the merge.

The git merge command was first introduced in 分支的基本用法. Though it is used in various places
in the book, there are very few variations of the merge command — generally just git merge
<branch> with the name of the single branch you want to merge in.

We covered how to do a squashed merge (where Git merges the work but pretends like it’s just a new
commit without recording the history of the branch you’re merging in) at the very end of Fork 公眾專
案.

We went over a lot about the merge process and command, including the -Xignore-space-change
command and the --abort flag to abort a problem merge in Advanced Merging.

We learned how to verify signatures before merging if your project is using GPG signing in Signing
Commits.

Finally, we learned about Subtree merging in Subtree Merging.

git mergetool
The git mergetool command simply launches an external merge helper in case you have issues with
a merge in Git.

We mention it quickly in 合併衝突的基本解法 and go into detail on how to implement your own
external merge tool in External Merge and Diff Tools.

git log
The git log command is used to show the reachable recorded history of a project from the most
recent commit snapshot backwards. By default it will only show the history of the branch you’re
currently on, but can be given different or even multiple heads or branches from which to traverse. It is
also often used to show differences between two or more branches at the commit level.

This command is used in nearly every chapter of the book to demonstrate the history of a project.

We introduce the command and cover it in some depth in 檢視提交的歷史記錄. There we look at the -p
and --stat option to get an idea of what was introduced in each commit and the --pretty and
--oneline options to view the history more concisely, along with some simple date and author
filtering options.

In 建立一個新的分支 we use it with the --decorate option to easily visualize where our branch
pointers are located and we also use the --graph option to see what divergent histories look like.

In 私有的小團隊 and Commit Ranges we cover the branchA..branchB syntax to use the git log
command to see what commits are unique to a branch relative to another branch. In Commit Ranges
we go through this fairly extensively.

In Merge Log and Triple Dot we cover using the branchA...branchB format and the --left-right
syntax to see what is in one branch or the other but not in both. In Merge Log we also look at how to

469

use the --merge option to help with merge conflict debugging as well as using the --cc option to
look at merge commit conflicts in your history.

In RefLog Shortnames we use the -g option to view the Git reflog through this tool instead of doing
branch traversal.

In Searching we look at using the -S and -L options to do fairly sophisticated searches for something
that happened historically in the code such as seeing the history of a function.

In Signing Commits we see how to use --show-signature to add a validation string to each commit
in the git log output based on if it was validly signed or not.

git stash
The git stash command is used to temporarily store uncommitted work in order to clean out your
working directory without having to commit unfinished work on a branch.

This is basically entirely covered in Stashing and Cleaning.

git tag
The git tag command is used to give a permanent bookmark to a specific point in the code history.
Generally this is used for things like releases.

This command is introduced and covered in detail in 標籤 and we use it in practice in 為釋出的版本加上
標籤.

We also cover how to create a GPG signed tag with the -s flag and verify one with the -v flag in Signing
Your Work.

Sharing and Updating Projects
There are not very many commands in Git that access the network, nearly all of the commands
operate on the local database. When you are ready to share your work or pull changes from elsewhere,
there are a handful of commands that deal with remote repositories.

git fetch
The git fetch command communicates with a remote repository and fetches down all the
information that is in that repository that is not in your current one and stores it in your local
database.

We first look at this command in 從你的遠端獲取或拉取 and we continue to see examples of it use in 遠
端分支.

We also use it in several of the examples in 對專案進行貢獻.

We use it to fetch a single specific reference that is outside of the default space in Pull Request 參照
and we see how to fetch from a bundle in Bundling.

We set up highly custom refspecs in order to make git fetch do something a little different than the
default in The Refspec.

470

git pull
The git pull command is basically a combination of the git fetch and git merge commands,
where Git will fetch from the remote you specify and then immediately try to merge it into the branch
you’re on.

We introduce it quickly in 從你的遠端獲取或拉取 and show how to see what it will merge if you run it in
檢視遠端.

We also see how to use it to help with rebasing difficulties in Rebase When You Rebase.

We show how to use it with a URL to pull in changes in a one-off fashion in 切換到遠端分支.

Finally, we very quickly mention that you can use the --verify-signatures option to it in order to
verify that commits you are pulling have been GPG signed in Signing Commits.

git push
The git push command is used to communicate with another repository, calculate what your local
database has that the remote one does not, and then pushes the difference into the other repository. It
requires write access to the other repository and so normally is authenticated somehow.

We first look at the git push command in 推送到你的遠端. Here we cover the basics of pushing a
branch to a remote repository. In Pushing we go a little deeper into pushing specific branches and in
Tracking Branches we see how to set up tracking branches to automatically push to. In 刪除遠端分支
we use the --delete flag to delete a branch on the server with git push.

Throughout 對專案進行貢獻 we see several examples of using git push to share work on branches
through multiple remotes.

We see how to use it to share tags that you have made with the --tags option in 分享標籤.

In Publishing Submodule Changes we use the --recurse-submodules option to check that all of our
submodules work has been published before pushing the superproject, which can be really helpful
when using submodules.

In Other Client Hooks we talk briefly about the pre-push hook, which is a script we can setup to run
before a push completes to verify that it should be allowed to push.

Finally, in Pushing Refspecs we look at pushing with a full refspec instead of the general shortcuts that
are normally used. This can help you be very specific about what work you wish to share.

git remote
The git remote command is a management tool for your record of remote repositories. It allows you
to save long URLs as short handles, such as “origin” so you don’t have to type them out all the
time. You can have several of these and the git remote command is used to add, change and delete
them.

This command is covered in detail in 與遠端協同工作, including listing, adding, removing and renaming
them.

It is used in nearly every subsequent chapter in the book too, but always in the standard git remote

471

add <name> <url> format.

git archive
The git archive command is used to create an archive file of a specific snapshot of the project.

We use git archive to create a tarball of a project for sharing in 準備釋出一個版本.

git submodule
The git submodule command is used to manage external repositories within a normal repositories.
This could be for libraries or other types of shared resources. The submodule command has several
sub-commands (add, update, sync, etc) for managing these resources.

This command is only mentioned and entirely covered in Submodules.

Inspection and Comparison
git show
The git show command can show a Git object in a simple and human readable way. Normally you
would use this to show the information about a tag or a commit.

We first use it to show annotated tag information in 有註解的標籤.

Later we use it quite a bit in Revision Selection to show the commits that our various revision
selections resolve to.

One of the more interesting things we do with git show is in Manual File Re-merging to extract
specific file contents of various stages during a merge conflict.

git shortlog
The git shortlog command is used to summarize the output of git log. It will take many of the
same options that the git log command will but instead of listing out all of the commits it will
present a summary of the commits grouped by author.

We showed how to use it to create a nice changelog in 簡短的日誌.

git describe
The git describe command is used to take anything that resolves to a commit and produces a
string that is somewhat human-readable and will not change. It’s a way to get a description of a
commit that is as unambiguous as a commit SHA-1 but more understandable.

We use git describe in 產生一個建置編號 and 準備釋出一個版本 to get a string to name our release
file after.

Debugging
Git has a couple of commands that are used to help debug an issue in your code. This ranges from

472

figuring out where something was introduced to figuring out who introduced it.

git bisect
The git bisect tool is an incredibly helpful debugging tool used to find which specific commit was
the first one to introduce a bug or problem by doing an automatic binary search.

It is fully covered in Binary Search and is only mentioned in that section.

git blame
The git blame command annotates the lines of any file with which commit was the last one to
introduce a change to each line of the file and what person authored that commit. This is helpful in
order to find the person to ask for more information about a specific section of your code.

It is covered in File Annotation and is only mentioned in that section.

git grep
The git grep command can help you find any string or regular expression in any of the files in your
source code, even older versions of your project.

It is covered in Git Grep and is only mentioned in that section.

Patching
A few commands in Git are centered around the concept of thinking of commits in terms of the
changes they introduce, as though the commit series is a series of patches. These commands help you
manage your branches in this manner.

git cherry-pick
The git cherry-pick command is used to take the change introduced in a single Git commit and try
to re-introduce it as a new commit on the branch you’re currently on. This can be useful to only take
one or two commits from a branch individually rather than merging in the branch which takes all the
changes.

Cherry picking is described and demonstrated in 衍合與挑揀的工作流程.

git rebase
The git rebase command is basically an automated cherry-pick. It determines a series of
commits and then cherry-picks them one by one in the same order somewhere else.

Rebasing is covered in detail in 衍合, including covering the collaborative issues involved with rebasing
branches that are already public.

We use it in practice during an example of splitting your history into two separate repositories in
Replace, using the --onto flag as well.

We go through running into a merge conflict during rebasing in Rerere.

473

We also use it in an interactive scripting mode with the -i option in Changing Multiple Commit
Messages.

git revert
The git revert command is essentially a reverse git cherry-pick. It creates a new commit that
applies the exact opposite of the change introduced in the commit you’re targeting, essentially
undoing or reverting it.

We use this in Reverse the commit to undo a merge commit.

Email
Many Git projects, including Git itself, are entirely maintained over mailing lists. Git has a number of
tools built into it that help make this process easier, from generating patches you can easily email to
applying those patches from an email box.

git apply
The git apply command applies a patch created with the git diff or even GNU diff command. It is
similar to what the patch command might do with a few small differences.

We demonstrate using it and the circumstances in which you might do so in 套用從電子郵件來的補丁.

git am
The git am command is used to apply patches from an email inbox, specifically one that is mbox
formatted. This is useful for receiving patches over email and applying them to your project easily.

We covered usage and workflow around git am in 使用 am 命令套用補丁 including using the
--resolved, -i and -3 options.

There are also a number of hooks you can use to help with the workflow around git am and they are
all covered in Email Workflow Hooks.

We also use it to apply patch formatted GitHub Pull Request changes in 電郵通知.

git format-patch
The git format-patch command is used to generate a series of patches in mbox format that you
can use to send to a mailing list properly formatted.

We go through an example of contributing to a project using the git format-patch tool in 透過電子
郵件貢獻到公眾專案.

git imap-send
The git imap-send command uploads a mailbox generated with git format-patch into an IMAP
drafts folder.

We go through an example of contributing to a project by sending patches with the git imap-send
tool in 透過電子郵件貢獻到公眾專案.

474

git send-email
The git send-email command is used to send patches that are generated with git format-patch
over email.

We go through an example of contributing to a project by sending patches with the git send-email
tool in 透過電子郵件貢獻到公眾專案.

git request-pull
The git request-pull command is simply used to generate an example message body to email to
someone. If you have a branch on a public server and want to let someone know how to integrate
those changes without sending the patches over email, you can run this command and send the
output to the person you want to pull the changes in.

We demonstrate how to use git request-pull to generate a pull message in Fork 公眾專案.

External Systems
Git comes with a few commands to integrate with other version control systems.

git svn
The git svn command is used to communicate with the Subversion version control system as a
client. This means you can use Git to checkout from and commit to a Subversion server.

This command is covered in depth in Git and Subversion.

git fast-import
For other version control systems or importing from nearly any format, you can use git fast-
import to quickly map the other format to something Git can easily record.

This command is covered in depth in A Custom Importer.

Administration
If you’re administering a Git repository or need to fix something in a big way, Git provides a number
of administrative commands to help you out.

git gc
The git gc command runs “garbage collection” on your repository, removing unnecessary files in
your database and packing up the remaining files into a more efficient format.

This command normally runs in the background for you, though you can manually run it if you wish.
We go over some examples of this in Maintenance.

git fsck
The git fsck command is used to check the internal database for problems or inconsistencies.

475

We only quickly use this once in Data Recovery to search for dangling objects.

git reflog
The git reflog command goes through a log of where all the heads of your branches have been as
you work to find commits you may have lost through rewriting histories.

We cover this command mainly in RefLog Shortnames, where we show normal usage to and how to
use git log -g to view the same information with git log output.

We also go through a practical example of recovering such a lost branch in Data Recovery.

git filter-branch
The git filter-branch command is used to rewrite loads of commits according to certain patterns,
like removing a file everywhere or filtering the entire repository down to a single subdirectory for
extracting a project.

In Removing a File from Every Commit we explain the command and explore several different options
such as --commit-filter, --subdirectory-filter and --tree-filter.

In Git-p4 and TFS we use it to fix up imported external repositories.

Plumbing Commands
There were also quite a number of lower level plumbing commands that we encountered in the book.

The first one we encounter is ls-remote in Pull Request 參照 which we use to look at the raw
references on the server.

We use ls-files in Manual File Re-merging, Rerere and The Index to take a more raw look at what
your staging area looks like.

We also mention rev-parse in Branch References to take just about any string and turn it into an
object SHA-1.

However, most of the low level plumbing commands we cover are in Git Internals, which is more or
less what the chapter is focused on. We tried to avoid use of them throughout most of the rest of the
book.

476

Index

477

	Pro Git
	目錄
	授權條款
	Scott Chacon 的作者序
	Ben Straub 的作者序
	銘謝
	簡介
	開始
	關於版本控制
	Git 的簡史
	Git 基礎要點
	命令列
	Git 安裝教學
	初次設定 Git
	取得說明文件
	摘要

	Git 基礎
	取得一個 Git 倉儲
	紀錄變更到版本庫中
	檢視提交的歷史記錄
	復原
	與遠端協同工作
	標籤
	Git Aliases
	總結

	使用 Git 分支
	簡述分支
	分支和合併的基本用法
	分支管理
	分支工作流程
	遠端分支
	衍合
	總結

	伺服器上的 Git
	通訊協定
	在伺服器上佈署 Git
	產生你的 SSH 公鑰
	設定伺服器
	Git 常駐程式
	Smart HTTP
	GitWeb
	GitLab
	第3方 Git 託管方案
	總結

	分散式的 Git
	分散式工作流程
	對專案進行貢獻
	維護一個專案
	Summary

	GitHub
	建立帳戶及設定
	參與一個專案
	維護專案
	Managing an organization
	Scripting GitHub
	總結

	Git Tools
	Revision Selection
	Interactive Staging
	Stashing and Cleaning
	Signing Your Work
	Searching
	Rewriting History
	Reset Demystified
	Advanced Merging
	Rerere
	Debugging with Git
	Submodules
	Bundling
	Replace
	Credential Storage
	Summary

	Customizing Git
	Git Configuration
	Git Attributes
	Git Hooks
	An Example Git-Enforced Policy
	Summary

	Git and Other Systems
	Git as a Client
	Migrating to Git
	Summary

	Git Internals
	Plumbing and Porcelain
	Git Objects
	Git References
	Packfiles
	The Refspec
	Transfer Protocols
	Maintenance and Data Recovery
	Environment Variables
	Summary

	附錄 A: Git in Other Environments
	Graphical Interfaces
	Git in Visual Studio
	Git in Eclipse
	Git in Bash
	Git in Zsh
	Git in Powershell
	Summary

	附錄 B: Embedding Git in your Applications
	Command-line Git
	Libgit2
	JGit

	附錄 C: Git Commands
	Setup and Config
	Getting and Creating Projects
	Basic Snapshotting
	Branching and Merging
	Sharing and Updating Projects
	Inspection and Comparison
	Debugging
	Patching
	Email
	External Systems
	Administration
	Plumbing Commands

	Index

